gym-compete/gym_compete/new_envs/agents/humanoid_blocker.py (32 lines of code) (raw):

from .agent import Agent from .humanoid import Humanoid from gym.spaces import Box import numpy as np def mass_center(mass, xpos): return (np.sum(mass * xpos, 0) / np.sum(mass))[0] class HumanoidBlocker(Humanoid): def __init__(self, agent_id, xml_path=None, team='blocker'): super(HumanoidBlocker, self).__init__(agent_id, xml_path) self.team = team def before_step(self): pass def after_step(self, action): forward_reward = 0. ctrl_cost = .1 * np.square(action).sum() cfrc_ext = self.get_cfrc_ext() contact_cost = .5e-6 * np.square(cfrc_ext).sum() contact_cost = min(contact_cost, 10) qpos = self.get_qpos() agent_standing = qpos[2] >= 1.0 survive = 5.0 if agent_standing else -5. reward = forward_reward - ctrl_cost - contact_cost + survive # reward = survive reward_info = dict() reward_info['reward_forward'] = forward_reward reward_info['reward_ctrl'] = ctrl_cost reward_info['reward_contact'] = contact_cost reward_info['reward_survive'] = survive reward_info['reward_move'] = reward done = bool(qpos[2] <= 0.5) return reward, done, reward_info def reached_goal(self): return False