multiagent/scenarios/simple.py [33:41]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        for agent in world.agents:
            agent.state.p_pos = np.random.uniform(-1,+1, world.dim_p)
            agent.state.p_vel = np.zeros(world.dim_p)
            agent.state.c = np.zeros(world.dim_c)
        for i, landmark in enumerate(world.landmarks):
            landmark.state.p_pos = np.random.uniform(-1,+1, world.dim_p)
            landmark.state.p_vel = np.zeros(world.dim_p)

    def reward(self, agent, world):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



multiagent/scenarios/simple_reference.py [47:55]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        for agent in world.agents:
            agent.state.p_pos = np.random.uniform(-1,+1, world.dim_p)
            agent.state.p_vel = np.zeros(world.dim_p)
            agent.state.c = np.zeros(world.dim_c)
        for i, landmark in enumerate(world.landmarks):
            landmark.state.p_pos = np.random.uniform(-1,+1, world.dim_p)
            landmark.state.p_vel = np.zeros(world.dim_p)

    def reward(self, agent, world):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



