multiagent/scenarios/simple_world_comm.py (233 lines of code) (raw):

import numpy as np from multiagent.core import World, Agent, Landmark from multiagent.scenario import BaseScenario class Scenario(BaseScenario): def make_world(self): world = World() # set any world properties first world.dim_c = 4 #world.damping = 1 num_good_agents = 2 num_adversaries = 4 num_agents = num_adversaries + num_good_agents num_landmarks = 1 num_food = 2 num_forests = 2 # add agents world.agents = [Agent() for i in range(num_agents)] for i, agent in enumerate(world.agents): agent.name = 'agent %d' % i agent.collide = True agent.leader = True if i == 0 else False agent.silent = True if i > 0 else False agent.adversary = True if i < num_adversaries else False agent.size = 0.075 if agent.adversary else 0.045 agent.accel = 3.0 if agent.adversary else 4.0 #agent.accel = 20.0 if agent.adversary else 25.0 agent.max_speed = 1.0 if agent.adversary else 1.3 # add landmarks world.landmarks = [Landmark() for i in range(num_landmarks)] for i, landmark in enumerate(world.landmarks): landmark.name = 'landmark %d' % i landmark.collide = True landmark.movable = False landmark.size = 0.2 landmark.boundary = False world.food = [Landmark() for i in range(num_food)] for i, landmark in enumerate(world.food): landmark.name = 'food %d' % i landmark.collide = False landmark.movable = False landmark.size = 0.03 landmark.boundary = False world.forests = [Landmark() for i in range(num_forests)] for i, landmark in enumerate(world.forests): landmark.name = 'forest %d' % i landmark.collide = False landmark.movable = False landmark.size = 0.3 landmark.boundary = False world.landmarks += world.food world.landmarks += world.forests #world.landmarks += self.set_boundaries(world) # world boundaries now penalized with negative reward # make initial conditions self.reset_world(world) return world def set_boundaries(self, world): boundary_list = [] landmark_size = 1 edge = 1 + landmark_size num_landmarks = int(edge * 2 / landmark_size) for x_pos in [-edge, edge]: for i in range(num_landmarks): l = Landmark() l.state.p_pos = np.array([x_pos, -1 + i * landmark_size]) boundary_list.append(l) for y_pos in [-edge, edge]: for i in range(num_landmarks): l = Landmark() l.state.p_pos = np.array([-1 + i * landmark_size, y_pos]) boundary_list.append(l) for i, l in enumerate(boundary_list): l.name = 'boundary %d' % i l.collide = True l.movable = False l.boundary = True l.color = np.array([0.75, 0.75, 0.75]) l.size = landmark_size l.state.p_vel = np.zeros(world.dim_p) return boundary_list def reset_world(self, world): # random properties for agents for i, agent in enumerate(world.agents): agent.color = np.array([0.45, 0.95, 0.45]) if not agent.adversary else np.array([0.95, 0.45, 0.45]) agent.color -= np.array([0.3, 0.3, 0.3]) if agent.leader else np.array([0, 0, 0]) # random properties for landmarks for i, landmark in enumerate(world.landmarks): landmark.color = np.array([0.25, 0.25, 0.25]) for i, landmark in enumerate(world.food): landmark.color = np.array([0.15, 0.15, 0.65]) for i, landmark in enumerate(world.forests): landmark.color = np.array([0.6, 0.9, 0.6]) # set random initial states for agent in world.agents: agent.state.p_pos = np.random.uniform(-1, +1, world.dim_p) agent.state.p_vel = np.zeros(world.dim_p) agent.state.c = np.zeros(world.dim_c) for i, landmark in enumerate(world.landmarks): landmark.state.p_pos = np.random.uniform(-0.9, +0.9, world.dim_p) landmark.state.p_vel = np.zeros(world.dim_p) for i, landmark in enumerate(world.food): landmark.state.p_pos = np.random.uniform(-0.9, +0.9, world.dim_p) landmark.state.p_vel = np.zeros(world.dim_p) for i, landmark in enumerate(world.forests): landmark.state.p_pos = np.random.uniform(-0.9, +0.9, world.dim_p) landmark.state.p_vel = np.zeros(world.dim_p) def benchmark_data(self, agent, world): if agent.adversary: collisions = 0 for a in self.good_agents(world): if self.is_collision(a, agent): collisions += 1 return collisions else: return 0 def is_collision(self, agent1, agent2): delta_pos = agent1.state.p_pos - agent2.state.p_pos dist = np.sqrt(np.sum(np.square(delta_pos))) dist_min = agent1.size + agent2.size return True if dist < dist_min else False # return all agents that are not adversaries def good_agents(self, world): return [agent for agent in world.agents if not agent.adversary] # return all adversarial agents def adversaries(self, world): return [agent for agent in world.agents if agent.adversary] def reward(self, agent, world): # Agents are rewarded based on minimum agent distance to each landmark #boundary_reward = -10 if self.outside_boundary(agent) else 0 main_reward = self.adversary_reward(agent, world) if agent.adversary else self.agent_reward(agent, world) return main_reward def outside_boundary(self, agent): if agent.state.p_pos[0] > 1 or agent.state.p_pos[0] < -1 or agent.state.p_pos[1] > 1 or agent.state.p_pos[1] < -1: return True else: return False def agent_reward(self, agent, world): # Agents are rewarded based on minimum agent distance to each landmark rew = 0 shape = False adversaries = self.adversaries(world) if shape: for adv in adversaries: rew += 0.1 * np.sqrt(np.sum(np.square(agent.state.p_pos - adv.state.p_pos))) if agent.collide: for a in adversaries: if self.is_collision(a, agent): rew -= 5 def bound(x): if x < 0.9: return 0 if x < 1.0: return (x - 0.9) * 10 return min(np.exp(2 * x - 2), 10) # 1 + (x - 1) * (x - 1) for p in range(world.dim_p): x = abs(agent.state.p_pos[p]) rew -= 2 * bound(x) for food in world.food: if self.is_collision(agent, food): rew += 2 rew += 0.05 * min([np.sqrt(np.sum(np.square(food.state.p_pos - agent.state.p_pos))) for food in world.food]) return rew def adversary_reward(self, agent, world): # Agents are rewarded based on minimum agent distance to each landmark rew = 0 shape = True agents = self.good_agents(world) adversaries = self.adversaries(world) if shape: rew -= 0.1 * min([np.sqrt(np.sum(np.square(a.state.p_pos - agent.state.p_pos))) for a in agents]) if agent.collide: for ag in agents: for adv in adversaries: if self.is_collision(ag, adv): rew += 5 return rew def observation2(self, agent, world): # get positions of all entities in this agent's reference frame entity_pos = [] for entity in world.landmarks: if not entity.boundary: entity_pos.append(entity.state.p_pos - agent.state.p_pos) food_pos = [] for entity in world.food: if not entity.boundary: food_pos.append(entity.state.p_pos - agent.state.p_pos) # communication of all other agents comm = [] other_pos = [] other_vel = [] for other in world.agents: if other is agent: continue comm.append(other.state.c) other_pos.append(other.state.p_pos - agent.state.p_pos) if not other.adversary: other_vel.append(other.state.p_vel) return np.concatenate([agent.state.p_vel] + [agent.state.p_pos] + entity_pos + other_pos + other_vel) def observation(self, agent, world): # get positions of all entities in this agent's reference frame entity_pos = [] for entity in world.landmarks: if not entity.boundary: entity_pos.append(entity.state.p_pos - agent.state.p_pos) in_forest = [np.array([-1]), np.array([-1])] inf1 = False inf2 = False if self.is_collision(agent, world.forests[0]): in_forest[0] = np.array([1]) inf1= True if self.is_collision(agent, world.forests[1]): in_forest[1] = np.array([1]) inf2 = True food_pos = [] for entity in world.food: if not entity.boundary: food_pos.append(entity.state.p_pos - agent.state.p_pos) # communication of all other agents comm = [] other_pos = [] other_vel = [] for other in world.agents: if other is agent: continue comm.append(other.state.c) oth_f1 = self.is_collision(other, world.forests[0]) oth_f2 = self.is_collision(other, world.forests[1]) if (inf1 and oth_f1) or (inf2 and oth_f2) or (not inf1 and not oth_f1 and not inf2 and not oth_f2) or agent.leader: #without forest vis other_pos.append(other.state.p_pos - agent.state.p_pos) if not other.adversary: other_vel.append(other.state.p_vel) else: other_pos.append([0, 0]) if not other.adversary: other_vel.append([0, 0]) # to tell the pred when the prey are in the forest prey_forest = [] ga = self.good_agents(world) for a in ga: if any([self.is_collision(a, f) for f in world.forests]): prey_forest.append(np.array([1])) else: prey_forest.append(np.array([-1])) # to tell leader when pred are in forest prey_forest_lead = [] for f in world.forests: if any([self.is_collision(a, f) for a in ga]): prey_forest_lead.append(np.array([1])) else: prey_forest_lead.append(np.array([-1])) comm = [world.agents[0].state.c] if agent.adversary and not agent.leader: return np.concatenate([agent.state.p_vel] + [agent.state.p_pos] + entity_pos + other_pos + other_vel + in_forest + comm) if agent.leader: return np.concatenate( [agent.state.p_vel] + [agent.state.p_pos] + entity_pos + other_pos + other_vel + in_forest + comm) else: return np.concatenate([agent.state.p_vel] + [agent.state.p_pos] + entity_pos + other_pos + in_forest + other_vel)