pachi_py/pachi/board.c (1,310 lines of code) (raw):
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//#define DEBUG
#include "board.h"
#include "debug.h"
#include "fbook.h"
#include "mq.h"
#include "random.h"
#ifdef BOARD_SPATHASH
#include "patternsp.h"
#endif
#ifdef BOARD_PAT3
#include "pattern3.h"
#endif
#ifdef BOARD_TRAITS
static void board_trait_recompute(struct board *board, coord_t coord);
#include "tactics/selfatari.h"
#endif
#if 0
#define profiling_noinline __attribute__((noinline))
#else
#define profiling_noinline
#endif
#define gi_granularity 4
#define gi_allocsize(gids) ((1 << gi_granularity) + ((gids) >> gi_granularity) * (1 << gi_granularity))
static void
board_setup(struct board *b)
{
memset(b, 0, sizeof(*b));
struct move m = { pass, S_NONE };
b->last_move = b->last_move2 = b->last_move3 = b->last_move4 = b->last_ko = b->ko = m;
}
struct board *
board_init(char *fbookfile)
{
struct board *b = malloc2(sizeof(struct board));
board_setup(b);
b->fbookfile = fbookfile;
// Default setup
b->size = 9 + 2;
board_clear(b);
return b;
}
static size_t
board_alloc(struct board *board)
{
/* We do not allocate the board structure itself but we allocate
* all the arrays with board contents. */
int bsize = board_size2(board) * sizeof(*board->b);
int gsize = board_size2(board) * sizeof(*board->g);
int fsize = board_size2(board) * sizeof(*board->f);
int nsize = board_size2(board) * sizeof(*board->n);
int psize = board_size2(board) * sizeof(*board->p);
int hsize = board_size2(board) * 2 * sizeof(*board->h);
int gisize = board_size2(board) * sizeof(*board->gi);
#ifdef WANT_BOARD_C
int csize = board_size2(board) * sizeof(*board->c);
#else
int csize = 0;
#endif
#ifdef BOARD_SPATHASH
int ssize = board_size2(board) * sizeof(*board->spathash);
#else
int ssize = 0;
#endif
#ifdef BOARD_PAT3
int p3size = board_size2(board) * sizeof(*board->pat3);
#else
int p3size = 0;
#endif
#ifdef BOARD_TRAITS
int tsize = board_size2(board) * sizeof(*board->t);
int tqsize = board_size2(board) * sizeof(*board->t);
#else
int tsize = 0;
int tqsize = 0;
#endif
int cdsize = board_size2(board) * sizeof(*board->coord);
size_t size = bsize + gsize + fsize + psize + nsize + hsize + gisize + csize + ssize + p3size + tsize + tqsize + cdsize;
void *x = malloc2(size);
/* board->b must come first */
board->b = x; x += bsize;
board->g = x; x += gsize;
board->f = x; x += fsize;
board->p = x; x += psize;
board->n = x; x += nsize;
board->h = x; x += hsize;
board->gi = x; x += gisize;
#ifdef WANT_BOARD_C
board->c = x; x += csize;
#endif
#ifdef BOARD_SPATHASH
board->spathash = x; x += ssize;
#endif
#ifdef BOARD_PAT3
board->pat3 = x; x += p3size;
#endif
#ifdef BOARD_TRAITS
board->t = x; x += tsize;
board->tq = x; x += tqsize;
#endif
board->coord = x; x += cdsize;
return size;
}
struct board *
board_copy(struct board *b2, struct board *b1)
{
memcpy(b2, b1, sizeof(struct board));
size_t size = board_alloc(b2);
memcpy(b2->b, b1->b, size);
// XXX: Special semantics.
b2->fbook = NULL;
return b2;
}
void
board_done_noalloc(struct board *board)
{
if (board->b) free(board->b);
if (board->fbook) fbook_done(board->fbook);
}
void
board_done(struct board *board)
{
board_done_noalloc(board);
free(board);
}
void
board_resize(struct board *board, int size)
{
#ifdef BOARD_SIZE
assert(board_size(board) == size + 2);
#endif
assert(size <= BOARD_MAX_SIZE);
board->size = size + 2 /* S_OFFBOARD margin */;
board->size2 = board_size(board) * board_size(board);
board->bits2 = 1;
while ((1 << board->bits2) < board->size2) board->bits2++;
if (board->b)
free(board->b);
size_t asize = board_alloc(board);
memset(board->b, 0, asize);
}
static void
board_init_data(struct board *board)
{
int size = board_size(board);
board_setup(board);
board_resize(board, size - 2 /* S_OFFBOARD margin */);
/* Setup neighborhood iterators */
board->nei8[0] = -size - 1; // (-1,-1)
board->nei8[1] = 1;
board->nei8[2] = 1;
board->nei8[3] = size - 2; // (-1,0)
board->nei8[4] = 2;
board->nei8[5] = size - 2; // (-1,1)
board->nei8[6] = 1;
board->nei8[7] = 1;
board->dnei[0] = -size - 1;
board->dnei[1] = 2;
board->dnei[2] = size*2 - 2;
board->dnei[3] = 2;
/* Setup initial symmetry */
if (size % 2) {
board->symmetry.d = 1;
board->symmetry.x1 = board->symmetry.y1 = board_size(board) / 2;
board->symmetry.x2 = board->symmetry.y2 = board_size(board) - 1;
board->symmetry.type = SYM_FULL;
} else {
/* TODO: We do not handle board symmetry on boards
* with no tengen yet. */
board->symmetry.d = 0;
board->symmetry.x1 = board->symmetry.y1 = 1;
board->symmetry.x2 = board->symmetry.y2 = board_size(board) - 1;
board->symmetry.type = SYM_NONE;
}
/* Set up coordinate cache */
foreach_point(board) {
board->coord[c][0] = c % board_size(board);
board->coord[c][1] = c / board_size(board);
} foreach_point_end;
/* Draw the offboard margin */
int top_row = board_size2(board) - board_size(board);
int i;
for (i = 0; i < board_size(board); i++)
board->b[i] = board->b[top_row + i] = S_OFFBOARD;
for (i = 0; i <= top_row; i += board_size(board))
board->b[i] = board->b[board_size(board) - 1 + i] = S_OFFBOARD;
foreach_point(board) {
coord_t coord = c;
if (board_at(board, coord) == S_OFFBOARD)
continue;
foreach_neighbor(board, c, {
inc_neighbor_count_at(board, coord, board_at(board, c));
} );
} foreach_point_end;
/* All positions are free! Except the margin. */
for (i = board_size(board); i < (board_size(board) - 1) * board_size(board); i++)
if (i % board_size(board) != 0 && i % board_size(board) != board_size(board) - 1)
board->f[board->flen++] = i;
/* Initialize zobrist hashtable. */
/* We will need these to be stable across Pachi runs for
* certain kinds of pattern matching, thus we do not use
* fast_random() for this. */
hash_t hseed = 0x3121110101112131;
foreach_point(board) {
board->h[c * 2] = (hseed *= 16807);
if (!board->h[c * 2])
board->h[c * 2] = 1;
/* And once again for white */
board->h[c * 2 + 1] = (hseed *= 16807);
if (!board->h[c * 2 + 1])
board->h[c * 2 + 1] = 1;
} foreach_point_end;
#ifdef BOARD_SPATHASH
/* Initialize spatial hashes. */
foreach_point(board) {
for (int d = 1; d <= BOARD_SPATHASH_MAXD; d++) {
for (int j = ptind[d]; j < ptind[d + 1]; j++) {
ptcoords_at(x, y, c, board, j);
board->spathash[coord_xy(board, x, y)][d - 1][0] ^=
pthashes[0][j][board_at(board, c)];
board->spathash[coord_xy(board, x, y)][d - 1][1] ^=
pthashes[0][j][stone_other(board_at(board, c))];
}
}
} foreach_point_end;
#endif
#ifdef BOARD_PAT3
/* Initialize 3x3 pattern codes. */
foreach_point(board) {
if (board_at(board, c) == S_NONE)
board->pat3[c] = pattern3_hash(board, c);
} foreach_point_end;
#endif
#ifdef BOARD_TRAITS
/* Initialize traits. */
foreach_point(board) {
trait_at(board, c, S_BLACK).cap = 0;
trait_at(board, c, S_WHITE).cap = 0;
trait_at(board, c, S_BLACK).cap1 = 0;
trait_at(board, c, S_WHITE).cap1 = 0;
#ifdef BOARD_TRAIT_SAFE
trait_at(board, c, S_BLACK).safe = true;
trait_at(board, c, S_WHITE).safe = true;
#endif
} foreach_point_end;
#endif
}
void
board_clear(struct board *board)
{
int size = board_size(board);
floating_t komi = board->komi;
char *fbookfile = board->fbookfile;
enum go_ruleset rules = board->rules;
board_done_noalloc(board);
static struct board bcache[BOARD_MAX_SIZE + 2];
assert(size > 0 && size <= BOARD_MAX_SIZE + 2);
if (bcache[size - 1].size == size) {
board_copy(board, &bcache[size - 1]);
} else {
board_init_data(board);
board_copy(&bcache[size - 1], board);
}
board->komi = komi;
board->fbookfile = fbookfile;
board->rules = rules;
if (board->fbookfile) {
board->fbook = fbook_init(board->fbookfile, board);
}
}
static char *
board_print_top(struct board *board, char *s, char *end, int c)
{
for (int i = 0; i < c; i++) {
char asdf[] = "ABCDEFGHJKLMNOPQRSTUVWXYZ";
s += snprintf(s, end - s, " ");
for (int x = 1; x < board_size(board) - 1; x++)
s += snprintf(s, end - s, "%c ", asdf[x - 1]);
s += snprintf(s, end -s, " ");
}
s += snprintf(s, end - s, "\n");
for (int i = 0; i < c; i++) {
s += snprintf(s, end - s, " +-");
for (int x = 1; x < board_size(board) - 1; x++)
s += snprintf(s, end - s, "--");
s += snprintf(s, end - s, "+");
}
s += snprintf(s, end - s, "\n");
return s;
}
static char *
board_print_bottom(struct board *board, char *s, char *end, int c)
{
for (int i = 0; i < c; i++) {
s += snprintf(s, end - s, " +-");
for (int x = 1; x < board_size(board) - 1; x++)
s += snprintf(s, end - s, "--");
s += snprintf(s, end - s, "+");
}
s += snprintf(s, end - s, "\n");
return s;
}
static char *
board_print_row(struct board *board, int y, char *s, char *end, board_cprint cprint)
{
s += snprintf(s, end - s, " %2d | ", y);
for (int x = 1; x < board_size(board) - 1; x++) {
if (coord_x(board->last_move.coord, board) == x && coord_y(board->last_move.coord, board) == y)
s += snprintf(s, end - s, "%c)", stone2char(board_atxy(board, x, y)));
else
s += snprintf(s, end - s, "%c ", stone2char(board_atxy(board, x, y)));
}
s += snprintf(s, end - s, "|");
if (cprint) {
s += snprintf(s, end - s, " %2d | ", y);
for (int x = 1; x < board_size(board) - 1; x++) {
s = cprint(board, coord_xy(board, x, y), s, end);
}
s += snprintf(s, end - s, "|");
}
s += snprintf(s, end - s, "\n");
return s;
}
char *
board_print_custom(struct board *board, FILE *f, board_cprint cprint)
{
char buf[10240];
char *s = buf;
char *end = buf + sizeof(buf);
s += snprintf(s, end - s, "Move: % 3d Komi: %2.1f Handicap: %d Captures B: %d W: %d\n",
board->moves, board->komi, board->handicap,
board->captures[S_BLACK], board->captures[S_WHITE]);
s = board_print_top(board, s, end, 1 + !!cprint);
for (int y = board_size(board) - 2; y >= 1; y--)
s = board_print_row(board, y, s, end, cprint);
board_print_bottom(board, s, end, 1 + !!cprint);
if (f != NULL) {
fprintf(f, "%s\n", buf);
} else {
return strdup(buf);
}
}
static char *
cprint_group(struct board *board, coord_t c, char *s, char *end)
{
s += snprintf(s, end - s, "%d ", group_base(group_at(board, c)));
return s;
}
char *
board_print(struct board *board, FILE *f)
{
return board_print_custom(board, f, DEBUGL(6) ? cprint_group : NULL);
}
#ifdef BOARD_TRAITS
#if BOARD_TRAIT_SAFE == 1
static bool
board_trait_safe(struct board *board, coord_t coord, enum stone color)
{
return board_safe_to_play(board, coord, color);
}
#elif BOARD_TRAIT_SAFE == 2
static bool
board_trait_safe(struct board *board, coord_t coord, enum stone color)
{
return !is_bad_selfatari(board, color, coord);
}
#endif
static void
board_trait_recompute(struct board *board, coord_t coord)
{
int sfb = -1, sfw = -1;
#ifdef BOARD_TRAIT_SAFE
sfb = trait_at(board, coord, S_BLACK).safe = board_trait_safe(board, coord, S_BLACK);
sfw = trait_at(board, coord, S_WHITE).safe = board_trait_safe(board, coord, S_WHITE);
#endif
if (DEBUGL(8)) {
fprintf(stderr, "traits[%s:%s lib=%d] (black cap=%d cap1=%d safe=%d) (white cap=%d cap1=%d safe=%d)\n",
coord2sstr(coord, board), stone2str(board_at(board, coord)), immediate_liberty_count(board, coord),
trait_at(board, coord, S_BLACK).cap, trait_at(board, coord, S_BLACK).cap1, sfb,
trait_at(board, coord, S_WHITE).cap, trait_at(board, coord, S_WHITE).cap1, sfw);
}
}
#endif
/* Recompute traits for dirty points that we have previously touched
* somehow (libs of their neighbors changed or so). */
static void
board_traits_recompute(struct board *board)
{
#ifdef BOARD_TRAITS
for (int i = 0; i < board->tqlen; i++) {
coord_t coord = board->tq[i];
trait_at(board, coord, S_BLACK).dirty = false;
if (board_at(board, coord) != S_NONE)
continue;
board_trait_recompute(board, coord);
}
board->tqlen = 0;
#endif
}
/* Queue traits of given point for recomputing. */
static void
board_trait_queue(struct board *board, coord_t coord)
{
#ifdef BOARD_TRAITS
if (trait_at(board, coord, S_BLACK).dirty)
return;
board->tq[board->tqlen++] = coord;
trait_at(board, coord, S_BLACK).dirty = true;
#endif
}
/* Update board hash with given coordinate. */
static void profiling_noinline
board_hash_update(struct board *board, coord_t coord, enum stone color)
{
board->hash ^= hash_at(board, coord, color);
board->qhash[coord_quadrant(coord, board)] ^= hash_at(board, coord, color);
if (DEBUGL(8))
fprintf(stderr, "board_hash_update(%d,%d,%d) ^ %"PRIhash" -> %"PRIhash"\n", color, coord_x(coord, board), coord_y(coord, board), hash_at(board, coord, color), board->hash);
#ifdef BOARD_SPATHASH
/* Gridcular metric is reflective, so we update all hashes
* of appropriate ditance in OUR circle. */
for (int d = 1; d <= BOARD_SPATHASH_MAXD; d++) {
for (int j = ptind[d]; j < ptind[d + 1]; j++) {
ptcoords_at(x, y, coord, board, j);
/* We either changed from S_NONE to color
* or vice versa; doesn't matter. */
board->spathash[coord_xy(board, x, y)][d - 1][0] ^=
pthashes[0][j][color] ^ pthashes[0][j][S_NONE];
board->spathash[coord_xy(board, x, y)][d - 1][1] ^=
pthashes[0][j][stone_other(color)] ^ pthashes[0][j][S_NONE];
}
}
#endif
#if defined(BOARD_PAT3)
/* @color is not what we need in case of capture. */
static const int ataribits[8] = { -1, 0, -1, 1, 2, -1, 3, -1 };
enum stone new_color = board_at(board, coord);
bool in_atari = false;
if (new_color == S_NONE) {
board->pat3[coord] = pattern3_hash(board, coord);
} else {
in_atari = (board_group_info(board, group_at(board, coord)).libs == 1);
}
foreach_8neighbor(board, coord) {
/* Internally, the loop uses fn__i=[0..7]. We can use
* it directly to address bits within the bitmap of the
* neighbors since the bitmap order is reverse to the
* loop order. */
if (board_at(board, c) != S_NONE)
continue;
board->pat3[c] &= ~(3 << (fn__i*2));
board->pat3[c] |= new_color << (fn__i*2);
if (ataribits[fn__i] >= 0) {
board->pat3[c] &= ~(1 << (16 + ataribits[fn__i]));
board->pat3[c] |= in_atari << (16 + ataribits[fn__i]);
}
#if defined(BOARD_TRAITS)
board_trait_queue(board, c);
#endif
} foreach_8neighbor_end;
#endif
}
/* Commit current board hash to history. */
static void profiling_noinline
board_hash_commit(struct board *board)
{
if (DEBUGL(8))
fprintf(stderr, "board_hash_commit %"PRIhash"\n", board->hash);
if (likely(board->history_hash[board->hash & history_hash_mask]) == 0) {
board->history_hash[board->hash & history_hash_mask] = board->hash;
} else {
hash_t i = board->hash;
while (board->history_hash[i & history_hash_mask]) {
if (board->history_hash[i & history_hash_mask] == board->hash) {
if (DEBUGL(5))
fprintf(stderr, "SUPERKO VIOLATION noted at %d,%d\n",
coord_x(board->last_move.coord, board), coord_y(board->last_move.coord, board));
board->superko_violation = true;
return;
}
i = history_hash_next(i);
}
board->history_hash[i & history_hash_mask] = board->hash;
}
}
void
board_symmetry_update(struct board *b, struct board_symmetry *symmetry, coord_t c)
{
if (likely(symmetry->type == SYM_NONE)) {
/* Fully degenerated already. We do not support detection
* of restoring of symmetry, assuming that this is too rare
* a case to handle. */
return;
}
int x = coord_x(c, b), y = coord_y(c, b), t = board_size(b) / 2;
int dx = board_size(b) - 1 - x; /* for SYM_DOWN */
if (DEBUGL(6)) {
fprintf(stderr, "SYMMETRY [%d,%d,%d,%d|%d=%d] update for %d,%d\n",
symmetry->x1, symmetry->y1, symmetry->x2, symmetry->y2,
symmetry->d, symmetry->type, x, y);
}
switch (symmetry->type) {
case SYM_FULL:
if (x == t && y == t) {
/* Tengen keeps full symmetry. */
return;
}
/* New symmetry now? */
if (x == y) {
symmetry->type = SYM_DIAG_UP;
symmetry->x1 = symmetry->y1 = 1;
symmetry->x2 = symmetry->y2 = board_size(b) - 1;
symmetry->d = 1;
} else if (dx == y) {
symmetry->type = SYM_DIAG_DOWN;
symmetry->x1 = symmetry->y1 = 1;
symmetry->x2 = symmetry->y2 = board_size(b) - 1;
symmetry->d = 1;
} else if (x == t) {
symmetry->type = SYM_HORIZ;
symmetry->y1 = 1;
symmetry->y2 = board_size(b) - 1;
symmetry->d = 0;
} else if (y == t) {
symmetry->type = SYM_VERT;
symmetry->x1 = 1;
symmetry->x2 = board_size(b) - 1;
symmetry->d = 0;
} else {
break_symmetry:
symmetry->type = SYM_NONE;
symmetry->x1 = symmetry->y1 = 1;
symmetry->x2 = symmetry->y2 = board_size(b) - 1;
symmetry->d = 0;
}
break;
case SYM_DIAG_UP:
if (x == y)
return;
goto break_symmetry;
case SYM_DIAG_DOWN:
if (dx == y)
return;
goto break_symmetry;
case SYM_HORIZ:
if (x == t)
return;
goto break_symmetry;
case SYM_VERT:
if (y == t)
return;
goto break_symmetry;
case SYM_NONE:
assert(0);
break;
}
if (DEBUGL(6)) {
fprintf(stderr, "NEW SYMMETRY [%d,%d,%d,%d|%d=%d]\n",
symmetry->x1, symmetry->y1, symmetry->x2, symmetry->y2,
symmetry->d, symmetry->type);
}
/* Whew. */
}
void
board_handicap_stone(struct board *board, int x, int y, FILE *f)
{
struct move m;
m.color = S_BLACK; m.coord = coord_xy(board, x, y);
board_play(board, &m);
/* Simulate white passing; otherwise, UCT search can get confused since
* tree depth parity won't match the color to move. */
board->moves++;
char *str = coord2str(m.coord, board);
if (DEBUGL(1))
fprintf(stderr, "choosing handicap %s (%d,%d)\n", str, x, y);
if (f) fprintf(f, "%s ", str);
free(str);
}
void
board_handicap(struct board *board, int stones, FILE *f)
{
int margin = 3 + (board_size(board) >= 13);
int min = margin;
int mid = board_size(board) / 2;
int max = board_size(board) - 1 - margin;
const int places[][2] = {
{ min, min }, { max, max }, { min, max }, { max, min },
{ min, mid }, { max, mid },
{ mid, min }, { mid, max },
{ mid, mid },
};
board->handicap = stones;
if (stones == 5 || stones == 7) {
board_handicap_stone(board, mid, mid, f);
stones--;
}
int i;
for (i = 0; i < stones; i++)
board_handicap_stone(board, places[i][0], places[i][1], f);
}
static void __attribute__((noinline))
check_libs_consistency(struct board *board, group_t g)
{
#ifdef DEBUG
if (!g) return;
struct group *gi = &board_group_info(board, g);
for (int i = 0; i < GROUP_KEEP_LIBS; i++)
if (gi->lib[i] && board_at(board, gi->lib[i]) != S_NONE) {
fprintf(stderr, "BOGUS LIBERTY %s of group %d[%s]\n", coord2sstr(gi->lib[i], board), g, coord2sstr(group_base(g), board));
assert(0);
}
#endif
}
static void
check_pat3_consistency(struct board *board, coord_t coord)
{
#ifdef DEBUG
foreach_8neighbor(board, coord) {
if (board_at(board, c) == S_NONE && pattern3_hash(board, c) != board->pat3[c]) {
board_print(board, stderr);
fprintf(stderr, "%s(%d)->%s(%d) computed %x != stored %x (%d)\n", coord2sstr(coord, board), coord, coord2sstr(c, board), c, pattern3_hash(board, c), board->pat3[c], fn__i);
assert(0);
}
} foreach_8neighbor_end;
#endif
}
static void
board_capturable_add(struct board *board, group_t group, coord_t lib, bool onestone)
{
//fprintf(stderr, "group %s cap %s\n", coord2sstr(group, board), coord2sstr(lib, boarD));
#ifdef BOARD_TRAITS
/* Increase capturable count trait of my last lib. */
enum stone capturing_color = stone_other(board_at(board, group));
assert(capturing_color == S_BLACK || capturing_color == S_WHITE);
foreach_neighbor(board, lib, {
if (DEBUGL(8) && group_at(board, c) == group)
fprintf(stderr, "%s[%d] %s cap bump bc of %s(%d) member %s onestone %d\n", coord2sstr(lib, board), trait_at(board, lib, capturing_color).cap, stone2str(capturing_color), coord2sstr(group, board), board_group_info(board, group).libs, coord2sstr(c, board), onestone);
trait_at(board, lib, capturing_color).cap += (group_at(board, c) == group);
trait_at(board, lib, capturing_color).cap1 += (group_at(board, c) == group && onestone);
});
board_trait_queue(board, lib);
#endif
#ifdef BOARD_PAT3
int fn__i = 0;
foreach_neighbor(board, lib, {
board->pat3[lib] |= (group_at(board, c) == group) << (16 + 3 - fn__i);
fn__i++;
});
#endif
#ifdef WANT_BOARD_C
/* Update the list of capturable groups. */
assert(group);
assert(board->clen < board_size2(board));
board->c[board->clen++] = group;
#endif
}
static void
board_capturable_rm(struct board *board, group_t group, coord_t lib, bool onestone)
{
//fprintf(stderr, "group %s nocap %s\n", coord2sstr(group, board), coord2sstr(lib, board));
#ifdef BOARD_TRAITS
/* Decrease capturable count trait of my previously-last lib. */
enum stone capturing_color = stone_other(board_at(board, group));
assert(capturing_color == S_BLACK || capturing_color == S_WHITE);
foreach_neighbor(board, lib, {
if (DEBUGL(8) && group_at(board, c) == group)
fprintf(stderr, "%s[%d] cap dump bc of %s(%d) member %s onestone %d\n", coord2sstr(lib, board), trait_at(board, lib, capturing_color).cap, coord2sstr(group, board), board_group_info(board, group).libs, coord2sstr(c, board), onestone);
trait_at(board, lib, capturing_color).cap -= (group_at(board, c) == group);
trait_at(board, lib, capturing_color).cap1 -= (group_at(board, c) == group && onestone);
});
board_trait_queue(board, lib);
#endif
#ifdef BOARD_PAT3
int fn__i = 0;
foreach_neighbor(board, lib, {
board->pat3[lib] &= ~((group_at(board, c) == group) << (16 + 3 - fn__i));
fn__i++;
});
#endif
#ifdef WANT_BOARD_C
/* Update the list of capturable groups. */
for (int i = 0; i < board->clen; i++) {
if (unlikely(board->c[i] == group)) {
board->c[i] = board->c[--board->clen];
return;
}
}
fprintf(stderr, "rm of bad group %d\n", group_base(group));
assert(0);
#endif
}
static void
board_atariable_add(struct board *board, group_t group, coord_t lib1, coord_t lib2)
{
#ifdef BOARD_TRAITS
board_trait_queue(board, lib1);
board_trait_queue(board, lib2);
#endif
}
static void
board_atariable_rm(struct board *board, group_t group, coord_t lib1, coord_t lib2)
{
#ifdef BOARD_TRAITS
board_trait_queue(board, lib1);
board_trait_queue(board, lib2);
#endif
}
static void
board_group_addlib(struct board *board, group_t group, coord_t coord)
{
if (DEBUGL(7)) {
fprintf(stderr, "Group %d[%s] %d: Adding liberty %s\n",
group_base(group), coord2sstr(group_base(group), board),
board_group_info(board, group).libs, coord2sstr(coord, board));
}
check_libs_consistency(board, group);
struct group *gi = &board_group_info(board, group);
bool onestone = group_is_onestone(board, group);
if (gi->libs < GROUP_KEEP_LIBS) {
for (int i = 0; i < GROUP_KEEP_LIBS; i++) {
#if 0
/* Seems extra branch just slows it down */
if (!gi->lib[i])
break;
#endif
if (unlikely(gi->lib[i] == coord))
return;
}
if (gi->libs == 0) {
board_capturable_add(board, group, coord, onestone);
} else if (gi->libs == 1) {
board_capturable_rm(board, group, gi->lib[0], onestone);
board_atariable_add(board, group, gi->lib[0], coord);
} else if (gi->libs == 2) {
board_atariable_rm(board, group, gi->lib[0], gi->lib[1]);
}
gi->lib[gi->libs++] = coord;
}
check_libs_consistency(board, group);
}
static void
board_group_find_extra_libs(struct board *board, group_t group, struct group *gi, coord_t avoid)
{
/* Add extra liberty from the board to our liberty list. */
unsigned char watermark[board_size2(board) / 8];
memset(watermark, 0, sizeof(watermark));
#define watermark_get(c) (watermark[c >> 3] & (1 << (c & 7)))
#define watermark_set(c) watermark[c >> 3] |= (1 << (c & 7))
for (int i = 0; i < GROUP_KEEP_LIBS - 1; i++)
watermark_set(gi->lib[i]);
watermark_set(avoid);
foreach_in_group(board, group) {
coord_t coord2 = c;
foreach_neighbor(board, coord2, {
if (board_at(board, c) + watermark_get(c) != S_NONE)
continue;
watermark_set(c);
gi->lib[gi->libs++] = c;
if (unlikely(gi->libs >= GROUP_KEEP_LIBS))
return;
} );
} foreach_in_group_end;
#undef watermark_get
#undef watermark_set
}
static void
board_group_rmlib(struct board *board, group_t group, coord_t coord)
{
if (DEBUGL(7)) {
fprintf(stderr, "Group %d[%s] %d: Removing liberty %s\n",
group_base(group), coord2sstr(group_base(group), board),
board_group_info(board, group).libs, coord2sstr(coord, board));
}
struct group *gi = &board_group_info(board, group);
bool onestone = group_is_onestone(board, group);
for (int i = 0; i < GROUP_KEEP_LIBS; i++) {
#if 0
/* Seems extra branch just slows it down */
if (!gi->lib[i])
break;
#endif
if (likely(gi->lib[i] != coord))
continue;
coord_t lib = gi->lib[i] = gi->lib[--gi->libs];
gi->lib[gi->libs] = 0;
check_libs_consistency(board, group);
/* Postpone refilling lib[] until we need to. */
assert(GROUP_REFILL_LIBS > 1);
if (gi->libs > GROUP_REFILL_LIBS)
return;
if (gi->libs == GROUP_REFILL_LIBS)
board_group_find_extra_libs(board, group, gi, coord);
if (gi->libs == 2) {
board_atariable_add(board, group, gi->lib[0], gi->lib[1]);
} else if (gi->libs == 1) {
board_capturable_add(board, group, gi->lib[0], onestone);
board_atariable_rm(board, group, gi->lib[0], lib);
} else if (gi->libs == 0)
board_capturable_rm(board, group, lib, onestone);
return;
}
/* This is ok even if gi->libs < GROUP_KEEP_LIBS since we
* can call this multiple times per coord. */
check_libs_consistency(board, group);
return;
}
/* This is a low-level routine that doesn't maintain consistency
* of all the board data structures. */
static void
board_remove_stone(struct board *board, group_t group, coord_t c)
{
enum stone color = board_at(board, c);
board_at(board, c) = S_NONE;
group_at(board, c) = 0;
board_hash_update(board, c, color);
#ifdef BOARD_TRAITS
/* We mark as cannot-capture now. If this is a ko/snapback,
* we will get incremented later in board_group_addlib(). */
trait_at(board, c, S_BLACK).cap = trait_at(board, c, S_BLACK).cap1 = 0;
trait_at(board, c, S_WHITE).cap = trait_at(board, c, S_WHITE).cap1 = 0;
board_trait_queue(board, c);
#endif
/* Increase liberties of surrounding groups */
coord_t coord = c;
foreach_neighbor(board, coord, {
dec_neighbor_count_at(board, c, color);
board_trait_queue(board, c);
group_t g = group_at(board, c);
if (g && g != group)
board_group_addlib(board, g, coord);
});
#ifdef BOARD_PAT3
/* board_hash_update() might have seen the freed up point as able
* to capture another group in atari that only after the loop
* above gained enough liberties. Reset pat3 again. */
board->pat3[c] = pattern3_hash(board, c);
#endif
if (DEBUGL(6))
fprintf(stderr, "pushing free move [%d]: %d,%d\n", board->flen, coord_x(c, board), coord_y(c, board));
board->f[board->flen++] = c;
}
static int profiling_noinline
board_group_capture(struct board *board, group_t group)
{
int stones = 0;
foreach_in_group(board, group) {
board->captures[stone_other(board_at(board, c))]++;
board_remove_stone(board, group, c);
stones++;
} foreach_in_group_end;
struct group *gi = &board_group_info(board, group);
assert(gi->libs == 0);
memset(gi, 0, sizeof(*gi));
return stones;
}
static void profiling_noinline
add_to_group(struct board *board, group_t group, coord_t prevstone, coord_t coord)
{
#ifdef BOARD_TRAITS
struct group *gi = &board_group_info(board, group);
bool onestone = group_is_onestone(board, group);
if (gi->libs == 1) {
/* Our group is temporarily in atari; make sure the capturable
* counts also correspond to the newly added stone before we
* start adding liberties again so bump-dump ops match. */
enum stone capturing_color = stone_other(board_at(board, group));
assert(capturing_color == S_BLACK || capturing_color == S_WHITE);
coord_t lib = board_group_info(board, group).lib[0];
if (coord_is_adjecent(lib, coord, board)) {
if (DEBUGL(8))
fprintf(stderr, "add_to_group %s: %s[%d] bump\n", coord2sstr(group, board), coord2sstr(lib, board), trait_at(board, lib, capturing_color).cap);
trait_at(board, lib, capturing_color).cap++;
/* This is never a 1-stone group, obviously. */
board_trait_queue(board, lib);
}
if (onestone) {
/* We are not 1-stone group anymore, update the cap1
* counter specifically. */
foreach_neighbor(board, group, {
if (board_at(board, c) != S_NONE) continue;
trait_at(board, c, capturing_color).cap1--;
board_trait_queue(board, c);
});
}
}
#endif
group_at(board, coord) = group;
groupnext_at(board, coord) = groupnext_at(board, prevstone);
groupnext_at(board, prevstone) = coord;
foreach_neighbor(board, coord, {
if (board_at(board, c) == S_NONE)
board_group_addlib(board, group, c);
});
if (DEBUGL(8))
fprintf(stderr, "add_to_group: added (%d,%d ->) %d,%d (-> %d,%d) to group %d\n",
coord_x(prevstone, board), coord_y(prevstone, board),
coord_x(coord, board), coord_y(coord, board),
groupnext_at(board, coord) % board_size(board), groupnext_at(board, coord) / board_size(board),
group_base(group));
}
static void profiling_noinline
merge_groups(struct board *board, group_t group_to, group_t group_from)
{
if (DEBUGL(7))
fprintf(stderr, "board_play_raw: merging groups %d -> %d\n",
group_base(group_from), group_base(group_to));
struct group *gi_from = &board_group_info(board, group_from);
struct group *gi_to = &board_group_info(board, group_to);
bool onestone_from = group_is_onestone(board, group_from);
bool onestone_to = group_is_onestone(board, group_to);
/* We do this early before the group info is rewritten. */
if (gi_from->libs == 2)
board_atariable_rm(board, group_from, gi_from->lib[0], gi_from->lib[1]);
else if (gi_from->libs == 1)
board_capturable_rm(board, group_from, gi_from->lib[0], onestone_from);
if (DEBUGL(7))
fprintf(stderr,"---- (froml %d, tol %d)\n", gi_from->libs, gi_to->libs);
if (gi_to->libs < GROUP_KEEP_LIBS) {
for (int i = 0; i < gi_from->libs; i++) {
for (int j = 0; j < gi_to->libs; j++)
if (gi_to->lib[j] == gi_from->lib[i])
goto next_from_lib;
if (gi_to->libs == 0) {
board_capturable_add(board, group_to, gi_from->lib[i], onestone_to);
} else if (gi_to->libs == 1) {
board_capturable_rm(board, group_to, gi_to->lib[0], onestone_to);
board_atariable_add(board, group_to, gi_to->lib[0], gi_from->lib[i]);
} else if (gi_to->libs == 2) {
board_atariable_rm(board, group_to, gi_to->lib[0], gi_to->lib[1]);
}
gi_to->lib[gi_to->libs++] = gi_from->lib[i];
if (gi_to->libs >= GROUP_KEEP_LIBS)
break;
next_from_lib:;
}
}
if (gi_to->libs == 1) {
coord_t lib = board_group_info(board, group_to).lib[0];
#ifdef BOARD_TRAITS
enum stone capturing_color = stone_other(board_at(board, group_to));
assert(capturing_color == S_BLACK || capturing_color == S_WHITE);
/* Our group is currently in atari; make sure we properly
* count in even the neighbors from the other group in the
* capturable counter. */
foreach_neighbor(board, lib, {
if (DEBUGL(8) && group_at(board, c) == group_from)
fprintf(stderr, "%s[%d] cap bump\n", coord2sstr(lib, board), trait_at(board, lib, capturing_color).cap);
trait_at(board, lib, capturing_color).cap += (group_at(board, c) == group_from);
/* This is never a 1-stone group, obviously. */
});
board_trait_queue(board, lib);
if (onestone_to) {
/* We are not 1-stone group anymore, update the cap1
* counter specifically. */
foreach_neighbor(board, group_to, {
if (board_at(board, c) != S_NONE) continue;
trait_at(board, c, capturing_color).cap1--;
board_trait_queue(board, c);
});
}
#endif
#ifdef BOARD_PAT3
if (gi_from->libs == 1) {
/* We removed group_from from capturable groups,
* therefore switching the atari flag off.
* We need to set it again since group_to is also
* capturable. */
int fn__i = 0;
foreach_neighbor(board, lib, {
board->pat3[lib] |= (group_at(board, c) == group_from) << (16 + 3 - fn__i);
fn__i++;
});
}
#endif
}
coord_t last_in_group;
foreach_in_group(board, group_from) {
last_in_group = c;
group_at(board, c) = group_to;
} foreach_in_group_end;
groupnext_at(board, last_in_group) = groupnext_at(board, group_base(group_to));
groupnext_at(board, group_base(group_to)) = group_base(group_from);
memset(gi_from, 0, sizeof(struct group));
if (DEBUGL(7))
fprintf(stderr, "board_play_raw: merged group: %d\n",
group_base(group_to));
}
static group_t profiling_noinline
new_group(struct board *board, coord_t coord)
{
group_t group = coord;
struct group *gi = &board_group_info(board, group);
foreach_neighbor(board, coord, {
if (board_at(board, c) == S_NONE)
/* board_group_addlib is ridiculously expensive for us */
#if GROUP_KEEP_LIBS < 4
if (gi->libs < GROUP_KEEP_LIBS)
#endif
gi->lib[gi->libs++] = c;
});
group_at(board, coord) = group;
groupnext_at(board, coord) = 0;
if (gi->libs == 2)
board_atariable_add(board, group, gi->lib[0], gi->lib[1]);
else if (gi->libs == 1)
board_capturable_add(board, group, gi->lib[0], true);
check_libs_consistency(board, group);
if (DEBUGL(8))
fprintf(stderr, "new_group: added %d,%d to group %d\n",
coord_x(coord, board), coord_y(coord, board),
group_base(group));
return group;
}
static inline group_t
play_one_neighbor(struct board *board,
coord_t coord, enum stone color, enum stone other_color,
coord_t c, group_t group)
{
enum stone ncolor = board_at(board, c);
group_t ngroup = group_at(board, c);
inc_neighbor_count_at(board, c, color);
/* We can be S_NONE, in that case we need to update the safety
* trait since we might be left with only one liberty. */
board_trait_queue(board, c);
if (!ngroup)
return group;
board_group_rmlib(board, ngroup, coord);
if (DEBUGL(7))
fprintf(stderr, "board_play_raw: reducing libs for group %d (%d:%d,%d)\n",
group_base(ngroup), ncolor, color, other_color);
if (ncolor == color && ngroup != group) {
if (!group) {
group = ngroup;
add_to_group(board, group, c, coord);
} else {
merge_groups(board, group, ngroup);
}
} else if (ncolor == other_color) {
if (DEBUGL(8)) {
struct group *gi = &board_group_info(board, ngroup);
fprintf(stderr, "testing captured group %d[%s]: ", group_base(ngroup), coord2sstr(group_base(ngroup), board));
for (int i = 0; i < GROUP_KEEP_LIBS; i++)
fprintf(stderr, "%s ", coord2sstr(gi->lib[i], board));
fprintf(stderr, "\n");
}
if (unlikely(board_group_captured(board, ngroup)))
board_group_capture(board, ngroup);
}
return group;
}
/* We played on a place with at least one liberty. We will become a member of
* some group for sure. */
static group_t profiling_noinline
board_play_outside(struct board *board, struct move *m, int f)
{
coord_t coord = m->coord;
enum stone color = m->color;
enum stone other_color = stone_other(color);
group_t group = 0;
board->f[f] = board->f[--board->flen];
if (DEBUGL(6))
fprintf(stderr, "popping free move [%d->%d]: %d\n", board->flen, f, board->f[f]);
#if defined(BOARD_TRAITS) && defined(DEBUG)
/* Sanity check that cap matches reality. */
{
int a = 0, b = 0;
foreach_neighbor(board, coord, {
group_t g = group_at(board, c);
a += g && (board_at(board, c) == other_color && board_group_info(board, g).libs == 1);
b += g && (board_at(board, c) == other_color && board_group_info(board, g).libs == 1) && group_is_onestone(board, g);
});
assert(a == trait_at(board, coord, color).cap);
assert(b == trait_at(board, coord, color).cap1);
#ifdef BOARD_TRAIT_SAFE
assert(board_trait_safe(board, coord, color) == trait_at(board, coord, color).safe);
#endif
}
#endif
foreach_neighbor(board, coord, {
group = play_one_neighbor(board, coord, color, other_color, c, group);
});
board_at(board, coord) = color;
if (unlikely(!group))
group = new_group(board, coord);
board->last_move4 = board->last_move3;
board->last_move3 = board->last_move2;
board->last_move2 = board->last_move;
board->last_move = *m;
board->moves++;
board_hash_update(board, coord, color);
board_symmetry_update(board, &board->symmetry, coord);
struct move ko = { pass, S_NONE };
board->ko = ko;
check_pat3_consistency(board, coord);
return group;
}
/* We played in an eye-like shape. Either we capture at least one of the eye
* sides in the process of playing, or return -1. */
static int profiling_noinline
board_play_in_eye(struct board *board, struct move *m, int f)
{
coord_t coord = m->coord;
enum stone color = m->color;
/* Check ko: Capture at a position of ko capture one move ago */
if (unlikely(color == board->ko.color && coord == board->ko.coord)) {
if (DEBUGL(5))
fprintf(stderr, "board_check: ko at %d,%d color %d\n", coord_x(coord, board), coord_y(coord, board), color);
return -1;
} else if (DEBUGL(6)) {
fprintf(stderr, "board_check: no ko at %d,%d,%d - ko is %d,%d,%d\n",
color, coord_x(coord, board), coord_y(coord, board),
board->ko.color, coord_x(board->ko.coord, board), coord_y(board->ko.coord, board));
}
struct move ko = { pass, S_NONE };
int captured_groups = 0;
foreach_neighbor(board, coord, {
group_t g = group_at(board, c);
if (DEBUGL(7))
fprintf(stderr, "board_check: group %d has %d libs\n",
g, board_group_info(board, g).libs);
captured_groups += (board_group_info(board, g).libs == 1);
});
if (likely(captured_groups == 0)) {
if (DEBUGL(5)) {
if (DEBUGL(6))
board_print(board, stderr);
fprintf(stderr, "board_check: one-stone suicide\n");
}
return -1;
}
#ifdef BOARD_TRAITS
/* We _will_ for sure capture something. */
assert(trait_at(board, coord, color).cap > 0);
#ifdef BOARD_TRAIT_SAFE
assert(trait_at(board, coord, color).safe == board_trait_safe(board, coord, color));
#endif
#endif
board->f[f] = board->f[--board->flen];
if (DEBUGL(6))
fprintf(stderr, "popping free move [%d->%d]: %d\n", board->flen, f, board->f[f]);
int ko_caps = 0;
coord_t cap_at = pass;
foreach_neighbor(board, coord, {
inc_neighbor_count_at(board, c, color);
/* Originally, this could not have changed any trait
* since no neighbors were S_NONE, however by now some
* of them might be removed from the board. */
board_trait_queue(board, c);
group_t group = group_at(board, c);
if (!group)
continue;
board_group_rmlib(board, group, coord);
if (DEBUGL(7))
fprintf(stderr, "board_play_raw: reducing libs for group %d\n",
group_base(group));
if (board_group_captured(board, group)) {
ko_caps += board_group_capture(board, group);
cap_at = c;
}
});
if (ko_caps == 1) {
ko.color = stone_other(color);
ko.coord = cap_at; // unique
board->last_ko = ko;
board->last_ko_age = board->moves;
if (DEBUGL(5))
fprintf(stderr, "guarding ko at %d,%s\n", ko.color, coord2sstr(ko.coord, board));
}
board_at(board, coord) = color;
group_t group = new_group(board, coord);
board->last_move4 = board->last_move3;
board->last_move3 = board->last_move2;
board->last_move2 = board->last_move;
board->last_move = *m;
board->moves++;
board_hash_update(board, coord, color);
board_hash_commit(board);
board_traits_recompute(board);
board_symmetry_update(board, &board->symmetry, coord);
board->ko = ko;
check_pat3_consistency(board, coord);
return !!group;
}
static int __attribute__((flatten))
board_play_f(struct board *board, struct move *m, int f)
{
if (DEBUGL(7)) {
fprintf(stderr, "board_play(%s): ---- Playing %d,%d\n", coord2sstr(m->coord, board), coord_x(m->coord, board), coord_y(m->coord, board));
}
if (likely(!board_is_eyelike(board, m->coord, stone_other(m->color)))) {
/* NOT playing in an eye. Thus this move has to succeed. (This
* is thanks to New Zealand rules. Otherwise, multi-stone
* suicide might fail.) */
group_t group = board_play_outside(board, m, f);
if (unlikely(board_group_captured(board, group))) {
board_group_capture(board, group);
}
board_hash_commit(board);
board_traits_recompute(board);
return 0;
} else {
return board_play_in_eye(board, m, f);
}
}
int
board_play(struct board *board, struct move *m)
{
if (unlikely(is_pass(m->coord) || is_resign(m->coord))) {
if (is_pass(m->coord) && board->rules == RULES_SIMING) {
/* On pass, the player gives a pass stone
* to the opponent. */
board->captures[stone_other(m->color)]++;
}
struct move nomove = { pass, S_NONE };
board->ko = nomove;
board->last_move4 = board->last_move3;
board->last_move3 = board->last_move2;
board->last_move2 = board->last_move;
board->last_move = *m;
return 0;
}
int f;
for (f = 0; f < board->flen; f++)
if (board->f[f] == m->coord)
return board_play_f(board, m, f);
if (DEBUGL(7))
fprintf(stderr, "board_check: stone exists\n");
return -1;
}
/* Undo, supported only for pass moves. This form of undo is required by KGS
* to settle disputes on dead groups. (Undo of real moves would be more complex
* particularly for capturing moves.) */
int board_undo(struct board *board)
{
if (!is_pass(board->last_move.coord))
return -1;
if (board->rules == RULES_SIMING) {
/* Return pass stone to the passing player. */
board->captures[stone_other(board->last_move.color)]--;
}
board->last_move = board->last_move2;
board->last_move2 = board->last_move3;
board->last_move3 = board->last_move4;
if (board->last_ko_age == board->moves)
board->ko = board->last_ko;
return 0;
}
static inline bool
board_try_random_move(struct board *b, enum stone color, coord_t *coord, int f, ppr_permit permit, void *permit_data)
{
*coord = b->f[f];
struct move m = { *coord, color };
if (DEBUGL(6))
fprintf(stderr, "trying random move %d: %d,%d %s %d\n", f, coord_x(*coord, b), coord_y(*coord, b), coord2sstr(*coord, b), board_is_valid_move(b, &m));
if (unlikely(board_is_one_point_eye(b, *coord, color)) /* bad idea to play into one, usually */
|| !board_is_valid_move(b, &m)
|| (permit && !permit(permit_data, b, &m)))
return false;
if (m.coord == *coord) {
return likely(board_play_f(b, &m, f) >= 0);
} else {
*coord = m.coord; // permit modified the coordinate
return likely(board_play(b, &m) >= 0);
}
}
void
board_play_random(struct board *b, enum stone color, coord_t *coord, ppr_permit permit, void *permit_data)
{
if (unlikely(b->flen == 0))
goto pass;
int base = fast_random(b->flen), f;
for (f = base; f < b->flen; f++)
if (board_try_random_move(b, color, coord, f, permit, permit_data))
return;
for (f = 0; f < base; f++)
if (board_try_random_move(b, color, coord, f, permit, permit_data))
return;
pass:
*coord = pass;
struct move m = { pass, color };
board_play(b, &m);
}
bool
board_is_false_eyelike(struct board *board, coord_t coord, enum stone eye_color)
{
enum stone color_diag_libs[S_MAX] = {0, 0, 0, 0};
/* XXX: We attempt false eye detection but we will yield false
* positives in case of http://senseis.xmp.net/?TwoHeadedDragon :-( */
foreach_diag_neighbor(board, coord) {
color_diag_libs[(enum stone) board_at(board, c)]++;
} foreach_diag_neighbor_end;
/* For false eye, we need two enemy stones diagonally in the
* middle of the board, or just one enemy stone at the edge
* or in the corner. */
color_diag_libs[stone_other(eye_color)] += !!color_diag_libs[S_OFFBOARD];
return color_diag_libs[stone_other(eye_color)] >= 2;
}
bool
board_is_one_point_eye(struct board *board, coord_t coord, enum stone eye_color)
{
return board_is_eyelike(board, coord, eye_color)
&& !board_is_false_eyelike(board, coord, eye_color);
}
enum stone
board_get_one_point_eye(struct board *board, coord_t coord)
{
if (board_is_one_point_eye(board, coord, S_WHITE))
return S_WHITE;
else if (board_is_one_point_eye(board, coord, S_BLACK))
return S_BLACK;
else
return S_NONE;
}
floating_t
board_fast_score(struct board *board)
{
int scores[S_MAX];
memset(scores, 0, sizeof(scores));
foreach_point(board) {
enum stone color = board_at(board, c);
if (color == S_NONE && board->rules != RULES_STONES_ONLY)
color = board_get_one_point_eye(board, c);
scores[color]++;
// fprintf(stderr, "%d, %d ++%d = %d\n", coord_x(c, board), coord_y(c, board), color, scores[color]);
} foreach_point_end;
return board->komi + (board->rules != RULES_SIMING ? board->handicap : 0) + scores[S_WHITE] - scores[S_BLACK];
}
/* Owner map: 0: undecided; 1: black; 2: white; 3: dame */
/* One flood-fill iteration; returns true if next iteration
* is required. */
static bool
board_tromp_taylor_iter(struct board *board, int *ownermap)
{
bool needs_update = false;
foreach_free_point(board) {
/* Ignore occupied and already-dame positions. */
assert(board_at(board, c) == S_NONE);
if (board->rules == RULES_STONES_ONLY)
ownermap[c] = 3;
if (ownermap[c] == 3)
continue;
/* Count neighbors. */
int nei[4] = {0};
foreach_neighbor(board, c, {
nei[ownermap[c]]++;
});
/* If we have neighbors of both colors, or dame,
* we are dame too. */
if ((nei[1] && nei[2]) || nei[3]) {
ownermap[c] = 3;
/* Speed up the propagation. */
foreach_neighbor(board, c, {
if (board_at(board, c) == S_NONE)
ownermap[c] = 3;
});
needs_update = true;
continue;
}
/* If we have neighbors of one color, we are owned
* by that color, too. */
if (!ownermap[c] && (nei[1] || nei[2])) {
int newowner = nei[1] ? 1 : 2;
ownermap[c] = newowner;
/* Speed up the propagation. */
foreach_neighbor(board, c, {
if (board_at(board, c) == S_NONE && !ownermap[c])
ownermap[c] = newowner;
});
needs_update = true;
continue;
}
} foreach_free_point_end;
return needs_update;
}
/* Tromp-Taylor Counting */
floating_t
board_official_score(struct board *board, struct move_queue *q)
{
/* A point P, not colored C, is said to reach C, if there is a path of
* (vertically or horizontally) adjacent points of P's color from P to
* a point of color C.
*
* A player's score is the number of points of her color, plus the
* number of empty points that reach only her color. */
int ownermap[board_size2(board)];
int s[4] = {0};
const int o[4] = {0, 1, 2, 0};
foreach_point(board) {
ownermap[c] = o[board_at(board, c)];
s[board_at(board, c)]++;
} foreach_point_end;
if (q) {
/* Process dead groups. */
for (unsigned int i = 0; i < q->moves; i++) {
foreach_in_group(board, q->move[i]) {
enum stone color = board_at(board, c);
ownermap[c] = o[stone_other(color)];
s[color]--; s[stone_other(color)]++;
} foreach_in_group_end;
}
}
/* We need to special-case empty board. */
if (!s[S_BLACK] && !s[S_WHITE])
return board->komi;
while (board_tromp_taylor_iter(board, ownermap))
/* Flood-fill... */;
int scores[S_MAX];
memset(scores, 0, sizeof(scores));
foreach_point(board) {
assert(board_at(board, c) == S_OFFBOARD || ownermap[c] != 0);
if (ownermap[c] == 3)
continue;
scores[ownermap[c]]++;
} foreach_point_end;
return board->komi + (board->rules != RULES_SIMING ? board->handicap : 0) + scores[S_WHITE] - scores[S_BLACK];
}
bool
board_set_rules(struct board *board, char *name)
{
if (!strcasecmp(name, "japanese")) {
board->rules = RULES_JAPANESE;
} else if (!strcasecmp(name, "chinese")) {
board->rules = RULES_CHINESE;
} else if (!strcasecmp(name, "aga")) {
board->rules = RULES_AGA;
} else if (!strcasecmp(name, "new_zealand")) {
board->rules = RULES_NEW_ZEALAND;
} else if (!strcasecmp(name, "siming") || !strcasecmp(name, "simplified_ing")) {
board->rules = RULES_SIMING;
} else {
return false;
}
return true;
}