pachi_py/pachi/board.h (370 lines of code) (raw):

/* probdist.h must be included before the include goard since we require * proper including order. */ #include "probdist.h" #ifndef PACHI_BOARD_H #define PACHI_BOARD_H #include <inttypes.h> #include <stdbool.h> #include <stdint.h> #include "util.h" #include "stone.h" #include "move.h" struct fbook; /* Maximum supported board size. (Without the S_OFFBOARD edges.) */ #define BOARD_MAX_SIZE 19 /* The board implementation has bunch of optional features. * Turn them on below: */ #define WANT_BOARD_C // capturable groups queue //#define BOARD_SIZE 9 // constant board size, allows better optimization //#define BOARD_SPATHASH // incremental patternsp.h hashes #define BOARD_SPATHASH_MAXD 3 // maximal diameter #define BOARD_PAT3 // incremental 3x3 pattern codes //#define BOARD_TRAITS 1 // incremental point traits (see struct btraits) //#define BOARD_TRAIT_SAFE 1 // include btraits.safe (rather expensive, unused) //#define BOARD_TRAIT_SAFE 2 // include btraits.safe based on full is_bad_selfatari() #define BOARD_MAX_MOVES (BOARD_MAX_SIZE * BOARD_MAX_SIZE) #define BOARD_MAX_GROUPS (BOARD_MAX_SIZE * BOARD_MAX_SIZE / 2) enum e_sym { SYM_FULL, SYM_DIAG_UP, SYM_DIAG_DOWN, SYM_HORIZ, SYM_VERT, SYM_NONE }; /* Some engines might normalize their reading and skip symmetrical * moves. We will tell them how can they do it. */ struct board_symmetry { /* Playground is in this rectangle. */ int x1, x2, y1, y2; /* d == 0: Full rectangle * d == 1: Top triangle */ int d; /* General symmetry type. */ /* Note that the above is redundant to this, but just provided * for easier usage. */ enum e_sym type; }; typedef uint64_t hash_t; #define PRIhash PRIx64 /* XXX: This really belongs in pattern3.h, unfortunately that would mean * a dependency hell. */ typedef uint32_t hash3_t; // 3x3 pattern hash /* Note that "group" is only chain of stones that is solidly * connected for us. */ typedef coord_t group_t; struct group { /* We keep track of only up to GROUP_KEEP_LIBS; over that, we * don't care. */ /* _Combination_ of these two values can make some difference * in performance - fine-tune. */ #define GROUP_KEEP_LIBS 10 // refill lib[] only when we hit this; this must be at least 2! // Moggy requires at least 3 - see below for semantic impact. #define GROUP_REFILL_LIBS 5 coord_t lib[GROUP_KEEP_LIBS]; /* libs is only LOWER BOUND for the number of real liberties!!! * It denotes only number of items in lib[], thus you can rely * on it to store real liberties only up to <= GROUP_REFILL_LIBS. */ int libs; }; struct neighbor_colors { char colors[S_MAX]; }; /* Point traits bitmap; we update this information incrementally, * it can be used e.g. for fast pattern features matching. */ struct btraits { /* Number of neighbors we can capture. 0=this move is * not capturing, 1..4=this many neighbors we can capture * (can be multiple neighbors of same group). */ unsigned cap:3; /* Number of 1-stone neighbors we can capture. */ unsigned cap1:3; #ifdef BOARD_TRAIT_SAFE /* Whether it is SAFE to play here. This is essentially just * cached result of board_safe_to_play(). (Of course the concept * of "safety" is not perfect here, but it's the cheapest * reasonable thing we can do.) */ bool safe:1; #endif /* Whether we need to re-compute this coordinate; used to * weed out duplicates. Maintained only for S_BLACK. */ bool dirty:1; }; /* You should treat this struct as read-only. Always call functions below if * you want to change it. */ struct board { int size; /* Including S_OFFBOARD margin - see below. */ int size2; /* size^2 */ int bits2; /* ceiling(log2(size2)) */ int captures[S_MAX]; floating_t komi; int handicap; /* The ruleset is currently almost never taken into account; * the board implementation is basically Chinese rules (handicap * stones compensation) w/ suicide (or you can look at it as * New Zealand w/o handi stones compensation), while the engine * enforces no-suicide, making for real Chinese rules. * However, we accept suicide moves by the opponent, so we * should work with rules allowing suicide, just not taking * full advantage of them. */ enum go_ruleset { RULES_CHINESE, /* default value */ RULES_AGA, RULES_NEW_ZEALAND, RULES_JAPANESE, RULES_STONES_ONLY, /* do not count eyes */ /* http://home.snafu.de/jasiek/siming.html */ /* Simplified ING rules - RULES_CHINESE with handicaps * counting as points and pass stones. Also should * allow suicide, but Pachi will never suicide * nevertheless. */ /* XXX: I couldn't find the point about pass stones * in the rule text, but it is Robert Jasiek's * interpretation of them... These rules were * used e.g. at the EGC2012 13x13 tournament. * They are not supported by KGS. */ RULES_SIMING, } rules; char *fbookfile; struct fbook *fbook; /* Iterator offsets for foreach_neighbor*() */ int nei8[8], dnei[4]; int moves; struct move last_move; struct move last_move2; /* second-to-last move */ struct move last_move3; /* just before last_move2, only set if last_move is pass */ struct move last_move4; /* just before last_move3, only set if last_move & last_move2 are pass */ /* Whether we tried to add a hash twice; board_play*() can * set this, but it will still carry out the move as well! */ bool superko_violation; /* The following two structures are goban maps and are indexed by * coord.pos. The map is surrounded by a one-point margin from * S_OFFBOARD stones in order to speed up some internal loops. * Some of the foreach iterators below might include these points; * you need to handle them yourselves, if you need to. */ /* Stones played on the board */ enum stone *b; /* enum stone */ /* Group id the stones are part of; 0 == no group */ group_t *g; /* Positions of next stones in the stone group; 0 == last stone */ coord_t *p; /* Neighboring colors; numbers of neighbors of index color */ struct neighbor_colors *n; /* Zobrist hash for each position */ hash_t *h; #ifdef BOARD_SPATHASH /* For spatial hashes, we use only 24 bits. */ /* [0] is d==1, we don't keep hash for d==0. */ /* We keep hashes for black-to-play ([][0]) and white-to-play * ([][1], reversed stone colors since we match all patterns as * black-to-play). */ uint32_t (*spathash)[BOARD_SPATHASH_MAXD][2]; #endif #ifdef BOARD_PAT3 /* 3x3 pattern code for each position; see pattern3.h for encoding * specification. The information is only valid for empty points. */ hash3_t *pat3; #endif #ifdef BOARD_TRAITS /* Incrementally matched point traits information, black-to-play * ([][0]) and white-to-play ([][1]). */ /* The information is only valid for empty points. */ struct btraits (*t)[2]; #endif /* Cached information on x-y coordinates so that we avoid division. */ uint8_t (*coord)[2]; /* Group information - indexed by gid (which is coord of base group stone) */ struct group *gi; /* Positions of free positions - queue (not map) */ /* Note that free position here is any valid move; including single-point eyes! * However, pass is not included. */ coord_t *f; int flen; #ifdef WANT_BOARD_C /* Queue of capturable groups */ group_t *c; int clen; #endif #ifdef BOARD_TRAITS /* Queue of positions that need their traits updated */ coord_t *tq; int tqlen; #endif /* Symmetry information */ struct board_symmetry symmetry; /* Last ko played on the board. */ struct move last_ko; int last_ko_age; /* Basic ko check */ struct move ko; /* Engine-specific state; persistent through board development, * is reset only at clear_board. */ void *es; /* Playout-specific state; persistent through board development, * but its lifetime is maintained in play_random_game(); it should * not be set outside of it. */ void *ps; /* --- PRIVATE DATA --- */ /* For superko check: */ /* Board "history" - hashes encountered. Size of the hash should be * >> board_size^2. */ #define history_hash_bits 12 #define history_hash_mask ((1 << history_hash_bits) - 1) #define history_hash_prev(i) ((i - 1) & history_hash_mask) #define history_hash_next(i) ((i + 1) & history_hash_mask) hash_t history_hash[1 << history_hash_bits]; /* Hash of current board position. */ hash_t hash; /* Hash of current board position quadrants. */ hash_t qhash[4]; }; #ifdef BOARD_SIZE /* Avoid unused variable warnings */ #define board_size(b_) (((b_) == (b_)) ? BOARD_SIZE + 2 : 0) #define board_size2(b_) (board_size(b_) * board_size(b_)) #define real_board_size(b_) (((b_) == (b_)) ? BOARD_SIZE : 0) #else #define board_size(b_) ((b_)->size) #define board_size2(b_) ((b_)->size2) #define real_board_size(b_) ((b_)->size - 2) #endif /* This is a shortcut for taking different action on smaller * and large boards (e.g. picking different variable defaults). * This is of course less optimal than fine-tuning dependency * function of values on board size, but that is difficult and * possibly not very rewarding if you are interested just in * 9x9 and 19x19. */ #define board_large(b_) (board_size(b_)-2 >= 15) #define board_small(b_) (board_size(b_)-2 <= 9) #if BOARD_SIZE == 19 # define board_bits2(b_) 9 #elif BOARD_SIZE == 13 # define board_bits2(b_) 8 #elif BOARD_SIZE == 9 # define board_bits2(b_) 7 #else # define board_bits2(b_) ((b_)->bits2) #endif #define board_at(b_, c) ((b_)->b[c]) #define board_atxy(b_, x, y) ((b_)->b[(x) + board_size(b_) * (y)]) #define group_at(b_, c) ((b_)->g[c]) #define group_atxy(b_, x, y) ((b_)->g[(x) + board_size(b_) * (y)]) /* Warning! Neighbor count is not kept up-to-date for S_NONE! */ #define neighbor_count_at(b_, coord, color) ((b_)->n[coord].colors[(enum stone) color]) #define set_neighbor_count_at(b_, coord, color, count) (neighbor_count_at(b_, coord, color) = (count)) #define inc_neighbor_count_at(b_, coord, color) (neighbor_count_at(b_, coord, color)++) #define dec_neighbor_count_at(b_, coord, color) (neighbor_count_at(b_, coord, color)--) #define immediate_liberty_count(b_, coord) (4 - neighbor_count_at(b_, coord, S_BLACK) - neighbor_count_at(b_, coord, S_WHITE) - neighbor_count_at(b_, coord, S_OFFBOARD)) #define trait_at(b_, coord, color) (b_)->t[coord][(color) - 1] #define groupnext_at(b_, c) ((b_)->p[c]) #define groupnext_atxy(b_, x, y) ((b_)->p[(x) + board_size(b_) * (y)]) #define group_base(g_) (g_) #define group_is_onestone(b_, g_) (groupnext_at(b_, group_base(g_)) == 0) #define board_group_info(b_, g_) ((b_)->gi[(g_)]) #define board_group_captured(b_, g_) (board_group_info(b_, g_).libs == 0) /* board_group_other_lib() makes sense only for groups with two liberties. */ #define board_group_other_lib(b_, g_, l_) (board_group_info(b_, g_).lib[board_group_info(b_, g_).lib[0] != (l_) ? 0 : 1]) #define hash_at(b_, coord, color) ((b_)->h[((color) == S_BLACK ? board_size2(b_) : 0) + coord]) struct board *board_init(char *fbookfile); struct board *board_copy(struct board *board2, struct board *board1); void board_done_noalloc(struct board *board); void board_done(struct board *board); /* size here is without the S_OFFBOARD margin. */ void board_resize(struct board *board, int size); void board_clear(struct board *board); typedef char *(*board_cprint)(struct board *b, coord_t c, char *s, char *end); char *board_print(struct board *board, FILE *f); char *board_print_custom(struct board *board, FILE *f, board_cprint cprint); /* Place given handicap on the board; coordinates are printed to f. */ void board_handicap(struct board *board, int stones, FILE *f); /* Returns group id, 0 on allowed suicide, pass or resign, -1 on error */ int board_play(struct board *board, struct move *m); /* Like above, but plays random move; the move coordinate is recorded * to *coord. This method will never fill your own eye. pass is played * when no move can be played. You can impose extra restrictions if you * supply your own permit function; the permit function can also modify * the move coordinate to redirect the move elsewhere. */ typedef bool (*ppr_permit)(void *data, struct board *b, struct move *m); void board_play_random(struct board *b, enum stone color, coord_t *coord, ppr_permit permit, void *permit_data); /*Undo, supported only for pass moves. Returns -1 on error, 0 otherwise. */ int board_undo(struct board *board); /* Returns true if given move can be played. */ static bool board_is_valid_play(struct board *b, enum stone color, coord_t coord); static bool board_is_valid_move(struct board *b, struct move *m); /* Returns true if ko was just taken. */ static bool board_playing_ko_threat(struct board *b); /* Returns 0 or ID of neighboring group in atari. */ static group_t board_get_atari_neighbor(struct board *b, coord_t coord, enum stone group_color); /* Returns true if the move is not obvious self-atari. */ static bool board_safe_to_play(struct board *b, coord_t coord, enum stone color); /* Determine number of stones in a group, up to @max stones. */ static int group_stone_count(struct board *b, group_t group, int max); /* Adjust symmetry information as if given coordinate has been played. */ void board_symmetry_update(struct board *b, struct board_symmetry *symmetry, coord_t c); /* Check if coordinates are within symmetry base. (If false, they can * be derived from the base.) */ static bool board_coord_in_symmetry(struct board *b, coord_t c); /* Returns true if given coordinate has all neighbors of given color or the edge. */ static bool board_is_eyelike(struct board *board, coord_t coord, enum stone eye_color); /* Returns true if given coordinate could be a false eye; this check makes * sense only if you already know the coordinate is_eyelike(). */ bool board_is_false_eyelike(struct board *board, coord_t coord, enum stone eye_color); /* Returns true if given coordinate is a 1-pt eye (checks against false eyes, or * at least tries to). */ bool board_is_one_point_eye(struct board *board, coord_t c, enum stone eye_color); /* Returns color of a 1pt eye owner, S_NONE if not an eye. */ enum stone board_get_one_point_eye(struct board *board, coord_t c); /* board_official_score() is the scoring method for yielding score suitable * for external presentation. For fast scoring of entirely filled boards * (e.g. playouts), use board_fast_score(). */ /* Positive: W wins */ /* Compare number of stones + 1pt eyes. */ floating_t board_fast_score(struct board *board); /* Tromp-Taylor scoring, assuming given groups are actually dead. */ struct move_queue; floating_t board_official_score(struct board *board, struct move_queue *mq); /* Set board rules according to given string. Returns false in case * of unknown ruleset name. */ bool board_set_rules(struct board *board, char *name); /** Iterators */ #define foreach_point(board_) \ do { \ coord_t c = 0; \ for (; c < board_size(board_) * board_size(board_); c++) #define foreach_point_and_pass(board_) \ do { \ coord_t c = pass; \ for (; c < board_size(board_) * board_size(board_); c++) #define foreach_point_end \ } while (0) #define foreach_free_point(board_) \ do { \ int fmax__ = (board_)->flen; \ for (int f__ = 0; f__ < fmax__; f__++) { \ coord_t c = (board_)->f[f__]; #define foreach_free_point_end \ } \ } while (0) #define foreach_in_group(board_, group_) \ do { \ struct board *board__ = board_; \ coord_t c = group_base(group_); \ coord_t c2 = c; c2 = groupnext_at(board__, c2); \ do { #define foreach_in_group_end \ c = c2; c2 = groupnext_at(board__, c2); \ } while (c != 0); \ } while (0) /* NOT VALID inside of foreach_point() or another foreach_neighbor(), or rather * on S_OFFBOARD coordinates. */ #define foreach_neighbor(board_, coord_, loop_body) \ do { \ struct board *board__ = board_; \ coord_t coord__ = coord_; \ coord_t c; \ c = coord__ - board_size(board__); do { loop_body } while (0); \ c = coord__ - 1; do { loop_body } while (0); \ c = coord__ + 1; do { loop_body } while (0); \ c = coord__ + board_size(board__); do { loop_body } while (0); \ } while (0) #define foreach_8neighbor(board_, coord_) \ do { \ int fn__i; \ coord_t c = (coord_); \ for (fn__i = 0; fn__i < 8; fn__i++) { \ c += (board_)->nei8[fn__i]; #define foreach_8neighbor_end \ } \ } while (0) #define foreach_diag_neighbor(board_, coord_) \ do { \ int fn__i; \ coord_t c = (coord_); \ for (fn__i = 0; fn__i < 4; fn__i++) { \ c += (board_)->dnei[fn__i]; #define foreach_diag_neighbor_end \ } \ } while (0) static inline bool board_is_eyelike(struct board *board, coord_t coord, enum stone eye_color) { return (neighbor_count_at(board, coord, eye_color) + neighbor_count_at(board, coord, S_OFFBOARD)) == 4; } /* Group suicides allowed */ static inline bool board_is_valid_play(struct board *board, enum stone color, coord_t coord) { if (board_at(board, coord) != S_NONE) return false; if (!board_is_eyelike(board, coord, stone_other(color))) return true; /* Play within {true,false} eye-ish formation */ if (board->ko.coord == coord && board->ko.color == color) return false; #ifdef BOARD_TRAITS /* XXX: Disallows suicide. */ return trait_at(board, coord, color).cap > 0; #else int groups_in_atari = 0; foreach_neighbor(board, coord, { group_t g = group_at(board, c); groups_in_atari += (board_group_info(board, g).libs == 1); }); return !!groups_in_atari; #endif } /* Check group suicides, slower than board_is_valid_play() */ static inline bool board_is_valid_play_no_suicide(struct board *board, enum stone color, coord_t coord) { if (board_at(board, coord) != S_NONE) return false; if (immediate_liberty_count(board, coord) >= 1) return true; if (board_is_eyelike(board, coord, stone_other(color)) && board->ko.coord == coord && board->ko.color == color) return false; // Capturing something ? #ifdef BOARD_TRAITS /* XXX: Disallows suicide. */ if (trait_at(board, coord, color).cap > 0) return true; #else foreach_neighbor(board, coord, { if (board_at(board, c) == stone_other(color) && board_group_info(board, group_at(board, c)).libs == 1) return true; }); #endif // Neighbour with 2 libs ? foreach_neighbor(board, coord, { if (board_at(board, c) == color && board_group_info(board, group_at(board, c)).libs > 1) return true; }); return false; // Suicide } static inline bool board_is_valid_move(struct board *board, struct move *m) { return board_is_valid_play(board, m->color, m->coord); } static inline bool board_playing_ko_threat(struct board *b) { return !is_pass(b->ko.coord); } static inline group_t board_get_atari_neighbor(struct board *b, coord_t coord, enum stone group_color) { #ifdef BOARD_TRAITS if (!trait_at(b, coord, stone_other(group_color)).cap) return 0; #endif foreach_neighbor(b, coord, { group_t g = group_at(b, c); if (g && board_at(b, c) == group_color && board_group_info(b, g).libs == 1) return g; /* We return first match. */ }); return 0; } static inline bool board_safe_to_play(struct board *b, coord_t coord, enum stone color) { /* number of free neighbors */ int libs = immediate_liberty_count(b, coord); if (libs > 1) return true; #ifdef BOARD_TRAITS /* number of capturable enemy groups */ if (trait_at(b, coord, color).cap > 0) return true; // XXX: We don't account for snapback. /* number of non-capturable friendly groups */ int noncap_ours = neighbor_count_at(b, coord, color) - trait_at(b, coord, stone_other(color)).cap; if (noncap_ours < 1) return false; /*#else see below */ #endif /* ok, but we need to check if they don't have just two libs. */ coord_t onelib = -1; foreach_neighbor(b, coord, { #ifndef BOARD_TRAITS if (board_at(b, c) == stone_other(color) && board_group_info(b, group_at(b, c)).libs == 1) return true; // can capture; no snapback check #endif if (board_at(b, c) != color) continue; group_t g = group_at(b, c); if (board_group_info(b, g).libs == 1) continue; // in atari if (board_group_info(b, g).libs == 2) { // two liberties if (libs > 0) return true; // we already have one real liberty /* we might be connecting two 2-lib groups, which is ok; * so remember the other liberty and just make sure it's * not the same one */ if (onelib >= 0 && c != onelib) return true; onelib = board_group_other_lib(b, g, c); continue; } // many liberties return true; }); // no good support group return false; } static inline int group_stone_count(struct board *b, group_t group, int max) { int n = 0; foreach_in_group(b, group) { n++; if (n >= max) return max; } foreach_in_group_end; return n; } static inline bool board_coord_in_symmetry(struct board *b, coord_t c) { if (coord_y(c, b) < b->symmetry.y1 || coord_y(c, b) > b->symmetry.y2) return false; if (coord_x(c, b) < b->symmetry.x1 || coord_x(c, b) > b->symmetry.x2) return false; if (b->symmetry.d) { int x = coord_x(c, b); if (b->symmetry.type == SYM_DIAG_DOWN) x = board_size(b) - 1 - x; if (x > coord_y(c, b)) return false; } return true; } #endif