pachi_py/pachi/board.h (370 lines of code) (raw):
/* probdist.h must be included before the include goard since we require
* proper including order. */
#include "probdist.h"
#ifndef PACHI_BOARD_H
#define PACHI_BOARD_H
#include <inttypes.h>
#include <stdbool.h>
#include <stdint.h>
#include "util.h"
#include "stone.h"
#include "move.h"
struct fbook;
/* Maximum supported board size. (Without the S_OFFBOARD edges.) */
#define BOARD_MAX_SIZE 19
/* The board implementation has bunch of optional features.
* Turn them on below: */
#define WANT_BOARD_C // capturable groups queue
//#define BOARD_SIZE 9 // constant board size, allows better optimization
//#define BOARD_SPATHASH // incremental patternsp.h hashes
#define BOARD_SPATHASH_MAXD 3 // maximal diameter
#define BOARD_PAT3 // incremental 3x3 pattern codes
//#define BOARD_TRAITS 1 // incremental point traits (see struct btraits)
//#define BOARD_TRAIT_SAFE 1 // include btraits.safe (rather expensive, unused)
//#define BOARD_TRAIT_SAFE 2 // include btraits.safe based on full is_bad_selfatari()
#define BOARD_MAX_MOVES (BOARD_MAX_SIZE * BOARD_MAX_SIZE)
#define BOARD_MAX_GROUPS (BOARD_MAX_SIZE * BOARD_MAX_SIZE / 2)
enum e_sym {
SYM_FULL,
SYM_DIAG_UP,
SYM_DIAG_DOWN,
SYM_HORIZ,
SYM_VERT,
SYM_NONE
};
/* Some engines might normalize their reading and skip symmetrical
* moves. We will tell them how can they do it. */
struct board_symmetry {
/* Playground is in this rectangle. */
int x1, x2, y1, y2;
/* d == 0: Full rectangle
* d == 1: Top triangle */
int d;
/* General symmetry type. */
/* Note that the above is redundant to this, but just provided
* for easier usage. */
enum e_sym type;
};
typedef uint64_t hash_t;
#define PRIhash PRIx64
/* XXX: This really belongs in pattern3.h, unfortunately that would mean
* a dependency hell. */
typedef uint32_t hash3_t; // 3x3 pattern hash
/* Note that "group" is only chain of stones that is solidly
* connected for us. */
typedef coord_t group_t;
struct group {
/* We keep track of only up to GROUP_KEEP_LIBS; over that, we
* don't care. */
/* _Combination_ of these two values can make some difference
* in performance - fine-tune. */
#define GROUP_KEEP_LIBS 10
// refill lib[] only when we hit this; this must be at least 2!
// Moggy requires at least 3 - see below for semantic impact.
#define GROUP_REFILL_LIBS 5
coord_t lib[GROUP_KEEP_LIBS];
/* libs is only LOWER BOUND for the number of real liberties!!!
* It denotes only number of items in lib[], thus you can rely
* on it to store real liberties only up to <= GROUP_REFILL_LIBS. */
int libs;
};
struct neighbor_colors {
char colors[S_MAX];
};
/* Point traits bitmap; we update this information incrementally,
* it can be used e.g. for fast pattern features matching. */
struct btraits {
/* Number of neighbors we can capture. 0=this move is
* not capturing, 1..4=this many neighbors we can capture
* (can be multiple neighbors of same group). */
unsigned cap:3;
/* Number of 1-stone neighbors we can capture. */
unsigned cap1:3;
#ifdef BOARD_TRAIT_SAFE
/* Whether it is SAFE to play here. This is essentially just
* cached result of board_safe_to_play(). (Of course the concept
* of "safety" is not perfect here, but it's the cheapest
* reasonable thing we can do.) */
bool safe:1;
#endif
/* Whether we need to re-compute this coordinate; used to
* weed out duplicates. Maintained only for S_BLACK. */
bool dirty:1;
};
/* You should treat this struct as read-only. Always call functions below if
* you want to change it. */
struct board {
int size; /* Including S_OFFBOARD margin - see below. */
int size2; /* size^2 */
int bits2; /* ceiling(log2(size2)) */
int captures[S_MAX];
floating_t komi;
int handicap;
/* The ruleset is currently almost never taken into account;
* the board implementation is basically Chinese rules (handicap
* stones compensation) w/ suicide (or you can look at it as
* New Zealand w/o handi stones compensation), while the engine
* enforces no-suicide, making for real Chinese rules.
* However, we accept suicide moves by the opponent, so we
* should work with rules allowing suicide, just not taking
* full advantage of them. */
enum go_ruleset {
RULES_CHINESE, /* default value */
RULES_AGA,
RULES_NEW_ZEALAND,
RULES_JAPANESE,
RULES_STONES_ONLY, /* do not count eyes */
/* http://home.snafu.de/jasiek/siming.html */
/* Simplified ING rules - RULES_CHINESE with handicaps
* counting as points and pass stones. Also should
* allow suicide, but Pachi will never suicide
* nevertheless. */
/* XXX: I couldn't find the point about pass stones
* in the rule text, but it is Robert Jasiek's
* interpretation of them... These rules were
* used e.g. at the EGC2012 13x13 tournament.
* They are not supported by KGS. */
RULES_SIMING,
} rules;
char *fbookfile;
struct fbook *fbook;
/* Iterator offsets for foreach_neighbor*() */
int nei8[8], dnei[4];
int moves;
struct move last_move;
struct move last_move2; /* second-to-last move */
struct move last_move3; /* just before last_move2, only set if last_move is pass */
struct move last_move4; /* just before last_move3, only set if last_move & last_move2 are pass */
/* Whether we tried to add a hash twice; board_play*() can
* set this, but it will still carry out the move as well! */
bool superko_violation;
/* The following two structures are goban maps and are indexed by
* coord.pos. The map is surrounded by a one-point margin from
* S_OFFBOARD stones in order to speed up some internal loops.
* Some of the foreach iterators below might include these points;
* you need to handle them yourselves, if you need to. */
/* Stones played on the board */
enum stone *b; /* enum stone */
/* Group id the stones are part of; 0 == no group */
group_t *g;
/* Positions of next stones in the stone group; 0 == last stone */
coord_t *p;
/* Neighboring colors; numbers of neighbors of index color */
struct neighbor_colors *n;
/* Zobrist hash for each position */
hash_t *h;
#ifdef BOARD_SPATHASH
/* For spatial hashes, we use only 24 bits. */
/* [0] is d==1, we don't keep hash for d==0. */
/* We keep hashes for black-to-play ([][0]) and white-to-play
* ([][1], reversed stone colors since we match all patterns as
* black-to-play). */
uint32_t (*spathash)[BOARD_SPATHASH_MAXD][2];
#endif
#ifdef BOARD_PAT3
/* 3x3 pattern code for each position; see pattern3.h for encoding
* specification. The information is only valid for empty points. */
hash3_t *pat3;
#endif
#ifdef BOARD_TRAITS
/* Incrementally matched point traits information, black-to-play
* ([][0]) and white-to-play ([][1]). */
/* The information is only valid for empty points. */
struct btraits (*t)[2];
#endif
/* Cached information on x-y coordinates so that we avoid division. */
uint8_t (*coord)[2];
/* Group information - indexed by gid (which is coord of base group stone) */
struct group *gi;
/* Positions of free positions - queue (not map) */
/* Note that free position here is any valid move; including single-point eyes!
* However, pass is not included. */
coord_t *f; int flen;
#ifdef WANT_BOARD_C
/* Queue of capturable groups */
group_t *c; int clen;
#endif
#ifdef BOARD_TRAITS
/* Queue of positions that need their traits updated */
coord_t *tq; int tqlen;
#endif
/* Symmetry information */
struct board_symmetry symmetry;
/* Last ko played on the board. */
struct move last_ko;
int last_ko_age;
/* Basic ko check */
struct move ko;
/* Engine-specific state; persistent through board development,
* is reset only at clear_board. */
void *es;
/* Playout-specific state; persistent through board development,
* but its lifetime is maintained in play_random_game(); it should
* not be set outside of it. */
void *ps;
/* --- PRIVATE DATA --- */
/* For superko check: */
/* Board "history" - hashes encountered. Size of the hash should be
* >> board_size^2. */
#define history_hash_bits 12
#define history_hash_mask ((1 << history_hash_bits) - 1)
#define history_hash_prev(i) ((i - 1) & history_hash_mask)
#define history_hash_next(i) ((i + 1) & history_hash_mask)
hash_t history_hash[1 << history_hash_bits];
/* Hash of current board position. */
hash_t hash;
/* Hash of current board position quadrants. */
hash_t qhash[4];
};
#ifdef BOARD_SIZE
/* Avoid unused variable warnings */
#define board_size(b_) (((b_) == (b_)) ? BOARD_SIZE + 2 : 0)
#define board_size2(b_) (board_size(b_) * board_size(b_))
#define real_board_size(b_) (((b_) == (b_)) ? BOARD_SIZE : 0)
#else
#define board_size(b_) ((b_)->size)
#define board_size2(b_) ((b_)->size2)
#define real_board_size(b_) ((b_)->size - 2)
#endif
/* This is a shortcut for taking different action on smaller
* and large boards (e.g. picking different variable defaults).
* This is of course less optimal than fine-tuning dependency
* function of values on board size, but that is difficult and
* possibly not very rewarding if you are interested just in
* 9x9 and 19x19. */
#define board_large(b_) (board_size(b_)-2 >= 15)
#define board_small(b_) (board_size(b_)-2 <= 9)
#if BOARD_SIZE == 19
# define board_bits2(b_) 9
#elif BOARD_SIZE == 13
# define board_bits2(b_) 8
#elif BOARD_SIZE == 9
# define board_bits2(b_) 7
#else
# define board_bits2(b_) ((b_)->bits2)
#endif
#define board_at(b_, c) ((b_)->b[c])
#define board_atxy(b_, x, y) ((b_)->b[(x) + board_size(b_) * (y)])
#define group_at(b_, c) ((b_)->g[c])
#define group_atxy(b_, x, y) ((b_)->g[(x) + board_size(b_) * (y)])
/* Warning! Neighbor count is not kept up-to-date for S_NONE! */
#define neighbor_count_at(b_, coord, color) ((b_)->n[coord].colors[(enum stone) color])
#define set_neighbor_count_at(b_, coord, color, count) (neighbor_count_at(b_, coord, color) = (count))
#define inc_neighbor_count_at(b_, coord, color) (neighbor_count_at(b_, coord, color)++)
#define dec_neighbor_count_at(b_, coord, color) (neighbor_count_at(b_, coord, color)--)
#define immediate_liberty_count(b_, coord) (4 - neighbor_count_at(b_, coord, S_BLACK) - neighbor_count_at(b_, coord, S_WHITE) - neighbor_count_at(b_, coord, S_OFFBOARD))
#define trait_at(b_, coord, color) (b_)->t[coord][(color) - 1]
#define groupnext_at(b_, c) ((b_)->p[c])
#define groupnext_atxy(b_, x, y) ((b_)->p[(x) + board_size(b_) * (y)])
#define group_base(g_) (g_)
#define group_is_onestone(b_, g_) (groupnext_at(b_, group_base(g_)) == 0)
#define board_group_info(b_, g_) ((b_)->gi[(g_)])
#define board_group_captured(b_, g_) (board_group_info(b_, g_).libs == 0)
/* board_group_other_lib() makes sense only for groups with two liberties. */
#define board_group_other_lib(b_, g_, l_) (board_group_info(b_, g_).lib[board_group_info(b_, g_).lib[0] != (l_) ? 0 : 1])
#define hash_at(b_, coord, color) ((b_)->h[((color) == S_BLACK ? board_size2(b_) : 0) + coord])
struct board *board_init(char *fbookfile);
struct board *board_copy(struct board *board2, struct board *board1);
void board_done_noalloc(struct board *board);
void board_done(struct board *board);
/* size here is without the S_OFFBOARD margin. */
void board_resize(struct board *board, int size);
void board_clear(struct board *board);
typedef char *(*board_cprint)(struct board *b, coord_t c, char *s, char *end);
char *board_print(struct board *board, FILE *f);
char *board_print_custom(struct board *board, FILE *f, board_cprint cprint);
/* Place given handicap on the board; coordinates are printed to f. */
void board_handicap(struct board *board, int stones, FILE *f);
/* Returns group id, 0 on allowed suicide, pass or resign, -1 on error */
int board_play(struct board *board, struct move *m);
/* Like above, but plays random move; the move coordinate is recorded
* to *coord. This method will never fill your own eye. pass is played
* when no move can be played. You can impose extra restrictions if you
* supply your own permit function; the permit function can also modify
* the move coordinate to redirect the move elsewhere. */
typedef bool (*ppr_permit)(void *data, struct board *b, struct move *m);
void board_play_random(struct board *b, enum stone color, coord_t *coord, ppr_permit permit, void *permit_data);
/*Undo, supported only for pass moves. Returns -1 on error, 0 otherwise. */
int board_undo(struct board *board);
/* Returns true if given move can be played. */
static bool board_is_valid_play(struct board *b, enum stone color, coord_t coord);
static bool board_is_valid_move(struct board *b, struct move *m);
/* Returns true if ko was just taken. */
static bool board_playing_ko_threat(struct board *b);
/* Returns 0 or ID of neighboring group in atari. */
static group_t board_get_atari_neighbor(struct board *b, coord_t coord, enum stone group_color);
/* Returns true if the move is not obvious self-atari. */
static bool board_safe_to_play(struct board *b, coord_t coord, enum stone color);
/* Determine number of stones in a group, up to @max stones. */
static int group_stone_count(struct board *b, group_t group, int max);
/* Adjust symmetry information as if given coordinate has been played. */
void board_symmetry_update(struct board *b, struct board_symmetry *symmetry, coord_t c);
/* Check if coordinates are within symmetry base. (If false, they can
* be derived from the base.) */
static bool board_coord_in_symmetry(struct board *b, coord_t c);
/* Returns true if given coordinate has all neighbors of given color or the edge. */
static bool board_is_eyelike(struct board *board, coord_t coord, enum stone eye_color);
/* Returns true if given coordinate could be a false eye; this check makes
* sense only if you already know the coordinate is_eyelike(). */
bool board_is_false_eyelike(struct board *board, coord_t coord, enum stone eye_color);
/* Returns true if given coordinate is a 1-pt eye (checks against false eyes, or
* at least tries to). */
bool board_is_one_point_eye(struct board *board, coord_t c, enum stone eye_color);
/* Returns color of a 1pt eye owner, S_NONE if not an eye. */
enum stone board_get_one_point_eye(struct board *board, coord_t c);
/* board_official_score() is the scoring method for yielding score suitable
* for external presentation. For fast scoring of entirely filled boards
* (e.g. playouts), use board_fast_score(). */
/* Positive: W wins */
/* Compare number of stones + 1pt eyes. */
floating_t board_fast_score(struct board *board);
/* Tromp-Taylor scoring, assuming given groups are actually dead. */
struct move_queue;
floating_t board_official_score(struct board *board, struct move_queue *mq);
/* Set board rules according to given string. Returns false in case
* of unknown ruleset name. */
bool board_set_rules(struct board *board, char *name);
/** Iterators */
#define foreach_point(board_) \
do { \
coord_t c = 0; \
for (; c < board_size(board_) * board_size(board_); c++)
#define foreach_point_and_pass(board_) \
do { \
coord_t c = pass; \
for (; c < board_size(board_) * board_size(board_); c++)
#define foreach_point_end \
} while (0)
#define foreach_free_point(board_) \
do { \
int fmax__ = (board_)->flen; \
for (int f__ = 0; f__ < fmax__; f__++) { \
coord_t c = (board_)->f[f__];
#define foreach_free_point_end \
} \
} while (0)
#define foreach_in_group(board_, group_) \
do { \
struct board *board__ = board_; \
coord_t c = group_base(group_); \
coord_t c2 = c; c2 = groupnext_at(board__, c2); \
do {
#define foreach_in_group_end \
c = c2; c2 = groupnext_at(board__, c2); \
} while (c != 0); \
} while (0)
/* NOT VALID inside of foreach_point() or another foreach_neighbor(), or rather
* on S_OFFBOARD coordinates. */
#define foreach_neighbor(board_, coord_, loop_body) \
do { \
struct board *board__ = board_; \
coord_t coord__ = coord_; \
coord_t c; \
c = coord__ - board_size(board__); do { loop_body } while (0); \
c = coord__ - 1; do { loop_body } while (0); \
c = coord__ + 1; do { loop_body } while (0); \
c = coord__ + board_size(board__); do { loop_body } while (0); \
} while (0)
#define foreach_8neighbor(board_, coord_) \
do { \
int fn__i; \
coord_t c = (coord_); \
for (fn__i = 0; fn__i < 8; fn__i++) { \
c += (board_)->nei8[fn__i];
#define foreach_8neighbor_end \
} \
} while (0)
#define foreach_diag_neighbor(board_, coord_) \
do { \
int fn__i; \
coord_t c = (coord_); \
for (fn__i = 0; fn__i < 4; fn__i++) { \
c += (board_)->dnei[fn__i];
#define foreach_diag_neighbor_end \
} \
} while (0)
static inline bool
board_is_eyelike(struct board *board, coord_t coord, enum stone eye_color)
{
return (neighbor_count_at(board, coord, eye_color)
+ neighbor_count_at(board, coord, S_OFFBOARD)) == 4;
}
/* Group suicides allowed */
static inline bool
board_is_valid_play(struct board *board, enum stone color, coord_t coord)
{
if (board_at(board, coord) != S_NONE)
return false;
if (!board_is_eyelike(board, coord, stone_other(color)))
return true;
/* Play within {true,false} eye-ish formation */
if (board->ko.coord == coord && board->ko.color == color)
return false;
#ifdef BOARD_TRAITS
/* XXX: Disallows suicide. */
return trait_at(board, coord, color).cap > 0;
#else
int groups_in_atari = 0;
foreach_neighbor(board, coord, {
group_t g = group_at(board, c);
groups_in_atari += (board_group_info(board, g).libs == 1);
});
return !!groups_in_atari;
#endif
}
/* Check group suicides, slower than board_is_valid_play() */
static inline bool
board_is_valid_play_no_suicide(struct board *board, enum stone color, coord_t coord)
{
if (board_at(board, coord) != S_NONE)
return false;
if (immediate_liberty_count(board, coord) >= 1)
return true;
if (board_is_eyelike(board, coord, stone_other(color)) &&
board->ko.coord == coord && board->ko.color == color)
return false;
// Capturing something ?
#ifdef BOARD_TRAITS
/* XXX: Disallows suicide. */
if (trait_at(board, coord, color).cap > 0)
return true;
#else
foreach_neighbor(board, coord, {
if (board_at(board, c) == stone_other(color) &&
board_group_info(board, group_at(board, c)).libs == 1)
return true;
});
#endif
// Neighbour with 2 libs ?
foreach_neighbor(board, coord, {
if (board_at(board, c) == color &&
board_group_info(board, group_at(board, c)).libs > 1)
return true;
});
return false; // Suicide
}
static inline bool
board_is_valid_move(struct board *board, struct move *m)
{
return board_is_valid_play(board, m->color, m->coord);
}
static inline bool
board_playing_ko_threat(struct board *b)
{
return !is_pass(b->ko.coord);
}
static inline group_t
board_get_atari_neighbor(struct board *b, coord_t coord, enum stone group_color)
{
#ifdef BOARD_TRAITS
if (!trait_at(b, coord, stone_other(group_color)).cap) return 0;
#endif
foreach_neighbor(b, coord, {
group_t g = group_at(b, c);
if (g && board_at(b, c) == group_color && board_group_info(b, g).libs == 1)
return g;
/* We return first match. */
});
return 0;
}
static inline bool
board_safe_to_play(struct board *b, coord_t coord, enum stone color)
{
/* number of free neighbors */
int libs = immediate_liberty_count(b, coord);
if (libs > 1)
return true;
#ifdef BOARD_TRAITS
/* number of capturable enemy groups */
if (trait_at(b, coord, color).cap > 0)
return true; // XXX: We don't account for snapback.
/* number of non-capturable friendly groups */
int noncap_ours = neighbor_count_at(b, coord, color) - trait_at(b, coord, stone_other(color)).cap;
if (noncap_ours < 1)
return false;
/*#else see below */
#endif
/* ok, but we need to check if they don't have just two libs. */
coord_t onelib = -1;
foreach_neighbor(b, coord, {
#ifndef BOARD_TRAITS
if (board_at(b, c) == stone_other(color) && board_group_info(b, group_at(b, c)).libs == 1)
return true; // can capture; no snapback check
#endif
if (board_at(b, c) != color) continue;
group_t g = group_at(b, c);
if (board_group_info(b, g).libs == 1) continue; // in atari
if (board_group_info(b, g).libs == 2) { // two liberties
if (libs > 0) return true; // we already have one real liberty
/* we might be connecting two 2-lib groups, which is ok;
* so remember the other liberty and just make sure it's
* not the same one */
if (onelib >= 0 && c != onelib) return true;
onelib = board_group_other_lib(b, g, c);
continue;
}
// many liberties
return true;
});
// no good support group
return false;
}
static inline int
group_stone_count(struct board *b, group_t group, int max)
{
int n = 0;
foreach_in_group(b, group) {
n++;
if (n >= max) return max;
} foreach_in_group_end;
return n;
}
static inline bool
board_coord_in_symmetry(struct board *b, coord_t c)
{
if (coord_y(c, b) < b->symmetry.y1 || coord_y(c, b) > b->symmetry.y2)
return false;
if (coord_x(c, b) < b->symmetry.x1 || coord_x(c, b) > b->symmetry.x2)
return false;
if (b->symmetry.d) {
int x = coord_x(c, b);
if (b->symmetry.type == SYM_DIAG_DOWN)
x = board_size(b) - 1 - x;
if (x > coord_y(c, b))
return false;
}
return true;
}
#endif