pachi_py/pachi/pattern.c (458 lines of code) (raw):
#define DEBUG
#include <assert.h>
#include <ctype.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include "board.h"
#include "debug.h"
#include "pattern.h"
#include "patternsp.h"
#include "patternprob.h"
#include "tactics/ladder.h"
#include "tactics/selfatari.h"
#include "tactics/util.h"
#define CAPTURE_COUNTSTONES_MAX ((1 << CAPTURE_COUNTSTONES_PAYLOAD_SIZE) - 1)
struct pattern_config DEFAULT_PATTERN_CONFIG = {
.bdist_max = 4,
.spat_min = 3, .spat_max = MAX_PATTERN_DIST,
.spat_largest = true,
};
#define PF_MATCH 15
pattern_spec PATTERN_SPEC_MATCH_DEFAULT = {
[FEAT_CAPTURE] = ~(1 << PF_CAPTURE_COUNTSTONES),
[FEAT_AESCAPE] = ~0,
[FEAT_SELFATARI] = ~0,
[FEAT_ATARI] = ~0,
[FEAT_BORDER] = ~0,
[FEAT_CONTIGUITY] = 0,
[FEAT_SPATIAL] = ~0,
};
static const struct feature_info {
char *name;
int payloads;
} features[FEAT_MAX] = {
[FEAT_CAPTURE] = { .name = "capture", .payloads = 64 },
[FEAT_AESCAPE] = { .name = "atariescape", .payloads = 16 },
[FEAT_SELFATARI] = { .name = "selfatari", .payloads = 4 },
[FEAT_ATARI] = { .name = "atari", .payloads = 4 },
[FEAT_BORDER] = { .name = "border", .payloads = -1 },
[FEAT_CONTIGUITY] = { .name = "cont", .payloads = 2 },
[FEAT_SPATIAL] = { .name = "s", .payloads = -1 },
};
char *
feature2str(char *str, struct feature *f)
{
return str + sprintf(str + strlen(str), "%s:%d", features[f->id].name, f->payload);
}
char *
str2feature(char *str, struct feature *f)
{
while (isspace(*str)) str++;
int unsigned flen = strcspn(str, ":");
for (unsigned int i = 0; i < sizeof(features)/sizeof(features[0]); i++)
if (strlen(features[i].name) == flen && !strncmp(features[i].name, str, flen)) {
f->id = i;
goto found;
}
fprintf(stderr, "invalid featurespec: %s[%d]\n", str, flen);
exit(EXIT_FAILURE);
found:
str += flen + 1;
f->payload = strtoull(str, &str, 10);
return str;
}
char *
feature_name(enum feature_id f)
{
return features[f].name;
}
int
feature_payloads(struct pattern_setup *pat, enum feature_id f)
{
switch (f) {
int payloads;
case FEAT_CAPTURE:
payloads = features[f].payloads;
if (pat->ps[FEAT_CAPTURE] & (1<<PF_CAPTURE_COUNTSTONES))
payloads *= CAPTURE_COUNTSTONES_MAX + 1;
return payloads;
case FEAT_SPATIAL:
assert(features[f].payloads < 0);
return pat->pc.spat_dict->nspatials;
case FEAT_BORDER:
assert(features[f].payloads < 0);
return pat->pc.bdist_max + 1;
default:
assert(features[f].payloads > 0);
return features[f].payloads;
}
}
void
patterns_init(struct pattern_setup *pat, char *arg, bool will_append, bool load_prob)
{
char *pdict_file = NULL;
memset(pat, 0, sizeof(*pat));
pat->pc = DEFAULT_PATTERN_CONFIG;
pat->pc.spat_dict = spatial_dict_init(will_append, !load_prob);
memcpy(&pat->ps, PATTERN_SPEC_MATCH_DEFAULT, sizeof(pattern_spec));
if (arg) {
char *optspec, *next = arg;
while (*next) {
optspec = next;
next += strcspn(next, ":");
if (*next) { *next++ = 0; } else { *next = 0; }
char *optname = optspec;
char *optval = strchr(optspec, '=');
if (optval) *optval++ = 0;
/* See pattern.h:pattern_config for description and
* pattern.c:DEFAULT_PATTERN_CONFIG for default values
* of the following options. */
if (!strcasecmp(optname, "bdist_max") && optval) {
pat->pc.bdist_max = atoi(optval);
} else if (!strcasecmp(optname, "spat_min") && optval) {
pat->pc.spat_min = atoi(optval);
} else if (!strcasecmp(optname, "spat_max") && optval) {
pat->pc.spat_max = atoi(optval);
} else if (!strcasecmp(optname, "spat_largest")) {
pat->pc.spat_largest = !optval || atoi(optval);
} else if (!strcasecmp(optname, "pdict_file") && optval) {
pdict_file = optval;
} else {
fprintf(stderr, "patterns: Invalid argument %s or missing value\n", optname);
exit(EXIT_FAILURE);
}
}
}
if (load_prob && pat->pc.spat_dict) {
pat->pd = pattern_pdict_init(pdict_file, &pat->pc);
}
}
/* pattern_spec helpers */
#define PS_ANY(F) (ps[FEAT_ ## F] & (1 << PF_MATCH))
#define PS_PF(F, P) (ps[FEAT_ ## F] & (1 << PF_ ## F ## _ ## P))
static struct feature *
pattern_match_capture(struct pattern_config *pc, pattern_spec ps,
struct pattern *p, struct feature *f,
struct board *b, struct move *m)
{
f->id = FEAT_CAPTURE; f->payload = 0;
#ifdef BOARD_TRAITS
if (!trait_at(b, m->coord, m->color).cap)
return f;
/* Capturable! */
if ((ps[FEAT_CAPTURE] & ~(1<<PF_CAPTURE_1STONE | 1<<PF_CAPTURE_TRAPPED | 1<<PF_CAPTURE_CONNECTION)) == 1<<PF_MATCH) {
if (PS_PF(CAPTURE, 1STONE))
f->payload |= (trait_at(b, m->coord, m->color).cap1 == trait_at(b, m->coord, m->color).cap) << PF_CAPTURE_1STONE;
if (PS_PF(CAPTURE, TRAPPED))
f->payload |= (!trait_at(b, m->coord, stone_other(m->color)).safe) << PF_CAPTURE_TRAPPED;
if (PS_PF(CAPTURE, CONNECTION))
f->payload |= (trait_at(b, m->coord, m->color).cap < neighbor_count_at(b, m->coord, stone_other(m->color))) << PF_CAPTURE_CONNECTION;
(f++, p->n++);
return f;
}
/* We need to know details, so we still have to go through
* the neighbors. */
#endif
/* We look at neighboring groups we could capture, and also if the
* opponent could save them. */
/* This is very similar in spirit to board_safe_to_play(), and almost
* a color inverse of pattern_match_aescape(). */
/* Whether an escape move would be safe for the opponent. */
int captures = 0;
coord_t onelib = -1;
int extra_libs = 0, connectable_groups = 0;
bool onestone = false, multistone = false;
int captured_stones = 0;
foreach_neighbor(b, m->coord, {
if (board_at(b, c) != stone_other(m->color)) {
if (board_at(b, c) == S_NONE)
extra_libs++; // free point
else if (board_at(b, c) == m->color && board_group_info(b, group_at(b, c)).libs == 1)
extra_libs += 2; // capturable enemy group
continue;
}
group_t g = group_at(b, c); assert(g);
if (board_group_info(b, g).libs > 1) {
connectable_groups++;
if (board_group_info(b, g).libs > 2) {
extra_libs += 2; // connected out
} else {
/* This is a bit tricky; we connect our 2-lib
* group to another 2-lib group, which counts
* as one liberty, but only if the other lib
* is not shared too. */
if (onelib == -1) {
onelib = board_group_other_lib(b, g, c);
extra_libs++;
} else {
if (c == onelib)
extra_libs--; // take that back
else
extra_libs++;
}
}
continue;
}
/* Capture! */
captures++;
if (PS_PF(CAPTURE, LADDER))
f->payload |= is_ladder(b, m->coord, g, true) << PF_CAPTURE_LADDER;
/* TODO: is_ladder() is too conservative in some
* very obvious situations, look at complete.gtp. */
if (PS_PF(CAPTURE, ATARIDEF))
foreach_in_group(b, g) {
foreach_neighbor(b, c, {
assert(board_at(b, c) != S_NONE || c == m->coord);
if (board_at(b, c) != m->color)
continue;
group_t g = group_at(b, c);
if (!g || board_group_info(b, g).libs != 1)
continue;
/* A neighboring group of ours is in atari. */
f->payload |= 1 << PF_CAPTURE_ATARIDEF;
});
} foreach_in_group_end;
if (PS_PF(CAPTURE, KO)
&& group_is_onestone(b, g)
&& neighbor_count_at(b, m->coord, stone_other(m->color))
+ neighbor_count_at(b, m->coord, S_OFFBOARD) == 4)
f->payload |= 1 << PF_CAPTURE_KO;
if (PS_PF(CAPTURE, COUNTSTONES)
&& captured_stones < CAPTURE_COUNTSTONES_MAX)
captured_stones += group_stone_count(b, g, CAPTURE_COUNTSTONES_MAX - captured_stones);
if (group_is_onestone(b, g))
onestone = true;
else
multistone = true;
});
if (captures > 0) {
if (PS_PF(CAPTURE, 1STONE))
f->payload |= (onestone && !multistone) << PF_CAPTURE_1STONE;
if (PS_PF(CAPTURE, TRAPPED))
f->payload |= (extra_libs < 2) << PF_CAPTURE_TRAPPED;
if (PS_PF(CAPTURE, CONNECTION))
f->payload |= (connectable_groups > 0) << PF_CAPTURE_CONNECTION;
if (PS_PF(CAPTURE, COUNTSTONES))
f->payload |= captured_stones << PF_CAPTURE_COUNTSTONES;
(f++, p->n++);
}
return f;
}
static struct feature *
pattern_match_aescape(struct pattern_config *pc, pattern_spec ps,
struct pattern *p, struct feature *f,
struct board *b, struct move *m)
{
f->id = FEAT_AESCAPE; f->payload = 0;
#ifdef BOARD_TRAITS
if (!trait_at(b, m->coord, stone_other(m->color)).cap)
return f;
/* Opponent can capture something! */
if ((ps[FEAT_AESCAPE] & ~(1<<PF_AESCAPE_1STONE | 1<<PF_AESCAPE_TRAPPED | 1<<PF_AESCAPE_CONNECTION)) == 1<<PF_MATCH) {
if (PS_PF(AESCAPE, 1STONE))
f->payload |= (trait_at(b, m->coord, stone_other(m->color)).cap1 == trait_at(b, m->coord, stone_other(m->color)).cap) << PF_AESCAPE_1STONE;
if (PS_PF(AESCAPE, TRAPPED))
f->payload |= (!trait_at(b, m->coord, m->color).safe) << PF_AESCAPE_TRAPPED;
if (PS_PF(AESCAPE, CONNECTION))
f->payload |= (trait_at(b, m->coord, stone_other(m->color)).cap < neighbor_count_at(b, m->coord, m->color)) << PF_AESCAPE_CONNECTION;
(f++, p->n++);
return f;
}
/* We need to know details, so we still have to go through
* the neighbors. */
#endif
/* Find if a neighboring group of ours is in atari, AND that we provide
* a liberty to connect out. XXX: No connect-and-die check. */
/* This is very similar in spirit to board_safe_to_play(). */
group_t in_atari = -1;
coord_t onelib = -1;
int extra_libs = 0, connectable_groups = 0;
bool onestone = false, multistone = false;
foreach_neighbor(b, m->coord, {
if (board_at(b, c) != m->color) {
if (board_at(b, c) == S_NONE)
extra_libs++; // free point
else if (board_at(b, c) == stone_other(m->color) && board_group_info(b, group_at(b, c)).libs == 1) {
extra_libs += 2; // capturable enemy group
/* XXX: We just consider this move safe
* unconditionally. */
}
continue;
}
group_t g = group_at(b, c); assert(g);
if (board_group_info(b, g).libs > 1) {
connectable_groups++;
if (board_group_info(b, g).libs > 2) {
extra_libs += 2; // connected out
} else {
/* This is a bit tricky; we connect our 2-lib
* group to another 2-lib group, which counts
* as one liberty, but only if the other lib
* is not shared too. */
if (onelib == -1) {
onelib = board_group_other_lib(b, g, c);
extra_libs++;
} else {
if (c == onelib)
extra_libs--; // take that back
else
extra_libs++;
}
}
continue;
}
/* In atari! */
in_atari = g;
if (PS_PF(AESCAPE, LADDER))
f->payload |= is_ladder(b, m->coord, g, true) << PF_AESCAPE_LADDER;
/* TODO: is_ladder() is too conservative in some
* very obvious situations, look at complete.gtp. */
if (group_is_onestone(b, g))
onestone = true;
else
multistone = true;
});
if (in_atari >= 0) {
if (PS_PF(AESCAPE, 1STONE))
f->payload |= (onestone && !multistone) << PF_AESCAPE_1STONE;
if (PS_PF(AESCAPE, TRAPPED))
f->payload |= (extra_libs < 2) << PF_AESCAPE_TRAPPED;
if (PS_PF(AESCAPE, CONNECTION))
f->payload |= (connectable_groups > 0) << PF_AESCAPE_CONNECTION;
(f++, p->n++);
}
return f;
}
static struct feature *
pattern_match_atari(struct pattern_config *pc, pattern_spec ps,
struct pattern *p, struct feature *f,
struct board *b, struct move *m)
{
foreach_neighbor(b, m->coord, {
if (board_at(b, c) != stone_other(m->color))
continue;
group_t g = group_at(b, c);
if (!g || board_group_info(b, g).libs != 2)
continue;
/* Can atari! */
f->id = FEAT_ATARI; f->payload = 0;
if (PS_PF(ATARI, LADDER)) {
/* Opponent will escape by the other lib. */
coord_t lib = board_group_other_lib(b, g, m->coord);
/* TODO: is_ladder() is too conservative in some
* very obvious situations, look at complete.gtp. */
f->payload |= wouldbe_ladder(b, g, lib, m->coord, stone_other(m->color)) << PF_ATARI_LADDER;
}
if (PS_PF(ATARI, KO) && !is_pass(b->ko.coord))
f->payload |= 1 << PF_ATARI_KO;
(f++, p->n++);
});
return f;
}
#ifndef BOARD_SPATHASH
#undef BOARD_SPATHASH_MAXD
#define BOARD_SPATHASH_MAXD 1
#endif
/* Match spatial features that are too distant to be pre-matched
* incrementally. */
struct feature *
pattern_match_spatial_outer(struct pattern_config *pc, pattern_spec ps,
struct pattern *p, struct feature *f,
struct board *b, struct move *m, hash_t h)
{
/* We record all spatial patterns black-to-play; simply
* reverse all colors if we are white-to-play. */
static enum stone bt_black[4] = { S_NONE, S_BLACK, S_WHITE, S_OFFBOARD };
static enum stone bt_white[4] = { S_NONE, S_WHITE, S_BLACK, S_OFFBOARD };
enum stone (*bt)[4] = m->color == S_WHITE ? &bt_white : &bt_black;
for (unsigned int d = BOARD_SPATHASH_MAXD + 1; d <= pc->spat_max; d++) {
/* Recompute missing outer circles:
* Go through all points in given distance. */
for (unsigned int j = ptind[d]; j < ptind[d + 1]; j++) {
ptcoords_at(x, y, m->coord, b, j);
h ^= pthashes[0][j][(*bt)[board_atxy(b, x, y)]];
}
if (d < pc->spat_min)
continue;
/* Record spatial feature, one per distance. */
unsigned int sid = spatial_dict_get(pc->spat_dict, d, h & spatial_hash_mask);
if (sid > 0) {
f->id = FEAT_SPATIAL;
f->payload = sid;
if (!pc->spat_largest)
(f++, p->n++);
} /* else not found, ignore */
}
return f;
}
struct feature *
pattern_match_spatial(struct pattern_config *pc, pattern_spec ps,
struct pattern *p, struct feature *f,
struct board *b, struct move *m)
{
/* XXX: This is partially duplicated from spatial_from_board(), but
* we build a hash instead of spatial record. */
assert(pc->spat_min > 0);
f->id = -1;
hash_t h = pthashes[0][0][S_NONE];
#ifdef BOARD_SPATHASH
bool w_to_play = m->color == S_WHITE;
for (int d = 2; d <= BOARD_SPATHASH_MAXD; d++) {
/* Reuse all incrementally matched data. */
h ^= b->spathash[m->coord][d - 1][w_to_play];
if (d < pc->spat_min)
continue;
/* Record spatial feature, one per distance. */
unsigned int sid = spatial_dict_get(pc->spat_dict, d, h & spatial_hash_mask);
if (sid > 0) {
f->id = FEAT_SPATIAL;
f->payload = sid;
if (!pc->spat_largest)
(f++, p->n++);
} /* else not found, ignore */
}
#else
assert(BOARD_SPATHASH_MAXD < 2);
#endif
if (unlikely(pc->spat_max > BOARD_SPATHASH_MAXD))
f = pattern_match_spatial_outer(pc, ps, p, f, b, m, h);
if (pc->spat_largest && f->id == FEAT_SPATIAL)
(f++, p->n++);
return f;
}
void
pattern_match(struct pattern_config *pc, pattern_spec ps,
struct pattern *p, struct board *b, struct move *m)
{
p->n = 0;
struct feature *f = &p->f[0];
/* TODO: We should match pretty much all of these features
* incrementally. */
if (PS_ANY(CAPTURE)) {
f = pattern_match_capture(pc, ps, p, f, b, m);
}
if (PS_ANY(AESCAPE)) {
f = pattern_match_aescape(pc, ps, p, f, b, m);
}
if (PS_ANY(SELFATARI)) {
bool simple = false;
if (PS_PF(SELFATARI, STUPID)) {
#ifdef BOARD_TRAITS
if (!b->precise_selfatari)
simple = !trait_at(b, m->coord, m->color).safe;
else
#endif
simple = !board_safe_to_play(b, m->coord, m->color);
}
bool thorough = false;
if (PS_PF(SELFATARI, SMART)) {
#ifdef BOARD_TRAITS
if (b->precise_selfatari)
thorough = !trait_at(b, m->coord, m->color).safe;
else
#endif
thorough = is_bad_selfatari(b, m->color, m->coord);
}
if (simple || thorough) {
f->id = FEAT_SELFATARI;
f->payload = simple << PF_SELFATARI_STUPID;
f->payload |= thorough << PF_SELFATARI_SMART;
(f++, p->n++);
}
}
if (PS_ANY(ATARI)) {
f = pattern_match_atari(pc, ps, p, f, b, m);
}
if (PS_ANY(BORDER)) {
unsigned int bdist = coord_edge_distance(m->coord, b);
if (bdist <= pc->bdist_max) {
f->id = FEAT_BORDER;
f->payload = bdist;
(f++, p->n++);
}
}
if (PS_ANY(CONTIGUITY) && !is_pass(b->last_move.coord)
&& coord_is_8adjecent(m->coord, b->last_move.coord, b)) {
f->id = FEAT_CONTIGUITY;
f->payload = 1;
(f++, p->n++);
}
if (PS_ANY(SPATIAL) && pc->spat_max > 0 && pc->spat_dict) {
f = pattern_match_spatial(pc, ps, p, f, b, m);
}
}
char *
pattern2str(char *str, struct pattern *p)
{
str = stpcpy(str, "(");
for (int i = 0; i < p->n; i++) {
if (i > 0) str = stpcpy(str, " ");
str = feature2str(str, &p->f[i]);
}
str = stpcpy(str, ")");
return str;
}
char *
str2pattern(char *str, struct pattern *p)
{
p->n = 0;
while (isspace(*str)) str++;
if (*str++ != '(') {
fprintf(stderr, "invalid patternspec: %s\n", str);
exit(EXIT_FAILURE);
}
while (*str != ')') {
str = str2feature(str, &p->f[p->n++]);
}
str++;
return str;
}