pachi_py/pachi/uct/dynkomi.c (415 lines of code) (raw):
#define DEBUG
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "board.h"
#include "debug.h"
#include "tactics/util.h"
#include "uct/dynkomi.h"
#include "uct/internal.h"
#include "uct/tree.h"
static void
generic_done(struct uct_dynkomi *d)
{
if (d->data) free(d->data);
free(d);
}
/* NONE dynkomi strategy - never fiddle with komi values. */
struct uct_dynkomi *
uct_dynkomi_init_none(struct uct *u, char *arg, struct board *b)
{
struct uct_dynkomi *d = calloc2(1, sizeof(*d));
d->uct = u;
d->permove = NULL;
d->persim = NULL;
d->done = generic_done;
d->data = NULL;
if (arg) {
fprintf(stderr, "uct: Dynkomi method none accepts no arguments\n");
exit(1);
}
return d;
}
/* LINEAR dynkomi strategy - Linearly Decreasing Handicap Compensation. */
/* At move 0, we impose extra komi of handicap_count*handicap_value, then
* we linearly decrease this extra komi throughout the game down to 0
* at @moves moves. Towards the end of the game the linear compensation
* becomes zero but we increase the extra komi when winning big. This reduces
* the number of point-wasting moves and makes the game more enjoyable for humans. */
struct dynkomi_linear {
int handicap_value[S_MAX];
int moves[S_MAX];
bool rootbased;
/* Increase the extra komi if my win ratio > green_zone but always
* keep extra_komi <= komi_ratchet. komi_ratchet starts infinite but decreases
* when we give too much extra komi and this puts us back < orange_zone.
* This is meant only to increase the territory margin when playing against
* weaker opponents. We never take negative komi when losing. The ratchet helps
* avoiding oscillations and keeping us above orange_zone.
* To disable the adaptive phase, set green_zone=2. */
floating_t komi_ratchet;
floating_t green_zone;
floating_t orange_zone;
floating_t drop_step;
};
static floating_t
linear_simple(struct dynkomi_linear *l, struct board *b, enum stone color)
{
int lmoves = l->moves[color];
floating_t base_komi = board_effective_handicap(b, l->handicap_value[color]);
return base_komi * (lmoves - b->moves) / lmoves;
}
static floating_t
linear_permove(struct uct_dynkomi *d, struct board *b, struct tree *tree)
{
struct dynkomi_linear *l = d->data;
enum stone color = d->uct->pondering ? tree->root_color : stone_other(tree->root_color);
int lmoves = l->moves[color];
if (b->moves < lmoves)
return linear_simple(l, b, color);
/* Allow simple adaptation in extreme endgame situations. */
floating_t extra_komi = floor(tree->extra_komi);
/* Do not take decisions on unstable value. */
if (tree->root->u.playouts < GJ_MINGAMES)
return extra_komi;
floating_t my_value = tree_node_get_value(tree, 1, tree->root->u.value);
/* We normalize komi as in komi_by_value(), > 0 when winning. */
extra_komi = komi_by_color(extra_komi, color);
if (extra_komi < 0 && DEBUGL(3))
fprintf(stderr, "XXX: extra_komi %.3f < 0 (color %s tree ek %.3f)\n", extra_komi, stone2str(color), tree->extra_komi);
// assert(extra_komi >= 0);
floating_t orig_komi = extra_komi;
if (my_value < 0.5 && l->komi_ratchet > 0 && l->komi_ratchet != INFINITY) {
if (DEBUGL(0))
fprintf(stderr, "losing %f extra komi %.1f ratchet %.1f -> 0\n",
my_value, extra_komi, l->komi_ratchet);
/* Disable dynkomi completely, too dangerous in this game. */
extra_komi = l->komi_ratchet = 0;
tree->untrustworthy_tree = true;
} else if (my_value < l->orange_zone && extra_komi > 0) {
extra_komi = l->komi_ratchet = fmax(extra_komi - l->drop_step, 0.0);
if (extra_komi != orig_komi && DEBUGL(3)) {
fprintf(stderr, "dropping to %f, extra komi %.1f -> %.1f\n",
my_value, orig_komi, extra_komi);
tree->untrustworthy_tree = true;
}
} else if (my_value > l->green_zone && extra_komi + 1 <= l->komi_ratchet) {
extra_komi += 1;
if (extra_komi != orig_komi && DEBUGL(3))
fprintf(stderr, "winning %f extra_komi %.1f -> %.1f, ratchet %.1f\n",
my_value, orig_komi, extra_komi, l->komi_ratchet);
}
return komi_by_color(extra_komi, color);
}
static floating_t
linear_persim(struct uct_dynkomi *d, struct board *b, struct tree *tree, struct tree_node *node)
{
struct dynkomi_linear *l = d->data;
if (l->rootbased)
return tree->extra_komi;
/* We don't reuse computed value from tree->extra_komi,
* since we want to use value correct for this node depth.
* This also means the values will stay correct after
* node promotion. */
enum stone color = d->uct->pondering ? tree->root_color : stone_other(tree->root_color);
int lmoves = l->moves[color];
if (b->moves < lmoves)
return linear_simple(l, b, color);
return tree->extra_komi;
}
struct uct_dynkomi *
uct_dynkomi_init_linear(struct uct *u, char *arg, struct board *b)
{
struct uct_dynkomi *d = calloc2(1, sizeof(*d));
d->uct = u;
d->permove = linear_permove;
d->persim = linear_persim;
d->done = generic_done;
struct dynkomi_linear *l = calloc2(1, sizeof(*l));
d->data = l;
/* Force white to feel behind and try harder, but not to the
* point of resigning immediately in high handicap games.
* By move 100 white should still be behind but should have
* caught up enough to avoid resigning. */
int moves = board_large(b) ? 100 : 50;
if (!board_small(b)) {
l->moves[S_BLACK] = moves;
l->moves[S_WHITE] = moves;
}
/* The real value of one stone is twice the komi so about 15 points.
* But use a lower value to avoid being too pessimistic as black
* or too optimistic as white. */
l->handicap_value[S_BLACK] = 8;
l->handicap_value[S_WHITE] = 1;
l->komi_ratchet = INFINITY;
l->green_zone = 0.85;
l->orange_zone = 0.8;
l->drop_step = 4.0;
if (arg) {
char *optspec, *next = arg;
while (*next) {
optspec = next;
next += strcspn(next, ":");
if (*next) { *next++ = 0; } else { *next = 0; }
char *optname = optspec;
char *optval = strchr(optspec, '=');
if (optval) *optval++ = 0;
if (!strcasecmp(optname, "moves") && optval) {
/* Dynamic komi in handicap game; linearly
* decreases to basic settings until move
* #optval. moves=blackmoves%whitemoves */
for (int i = S_BLACK; *optval && i <= S_WHITE; i++) {
l->moves[i] = atoi(optval);
optval += strcspn(optval, "%");
if (*optval) optval++;
}
} else if (!strcasecmp(optname, "handicap_value") && optval) {
/* Point value of single handicap stone,
* for dynkomi computation. */
for (int i = S_BLACK; *optval && i <= S_WHITE; i++) {
l->handicap_value[i] = atoi(optval);
optval += strcspn(optval, "%");
if (*optval) optval++;
}
} else if (!strcasecmp(optname, "rootbased")) {
/* If set, the extra komi applied will be
* the same for all simulations within a move,
* instead of being same for all simulations
* within the tree node. */
l->rootbased = !optval || atoi(optval);
} else if (!strcasecmp(optname, "green_zone") && optval) {
/* Increase komi when win ratio is above green_zone */
l->green_zone = atof(optval);
} else if (!strcasecmp(optname, "orange_zone") && optval) {
/* Decrease komi when > 0 and win ratio is below orange_zone */
l->orange_zone = atof(optval);
} else if (!strcasecmp(optname, "drop_step") && optval) {
/* Decrease komi by drop_step points */
l->drop_step = atof(optval);
} else {
fprintf(stderr, "uct: Invalid dynkomi argument %s or missing value\n", optname);
exit(1);
}
}
}
return d;
}
/* ADAPTIVE dynkomi strategy - Adaptive Situational Compensation */
/* We adapt the komi based on current situation:
* (i) score-based: We maintain the average score outcome of our
* games and adjust the komi by a fractional step towards the expected
* score;
* (ii) value-based: While winrate is above given threshold, adjust
* the komi by a fixed step in the appropriate direction.
* These adjustments can be
* (a) Move-stepped, new extra komi value is always set only at the
* beginning of the tree search for next move;
* (b) Continuous, new extra komi value is periodically re-determined
* and adjusted throughout a single tree search. */
struct dynkomi_adaptive {
/* Do not take measured average score into regard for
* first @lead_moves - the variance is just too much.
* (Instead, we consider the handicap-based komi provided
* by linear dynkomi.) */
int lead_moves;
/* Maximum komi to pretend the opponent to give. */
floating_t max_losing_komi;
/* Game portion at which losing komi is not allowed anymore. */
floating_t losing_komi_stop;
/* Turn off dynkomi at the (perceived) closing of the game
* (last few moves). */
bool no_komi_at_game_end;
/* Alternative game portion determination. */
bool adapt_aport;
floating_t (*indicator)(struct uct_dynkomi *d, struct board *b, struct tree *tree, enum stone color);
/* Value-based adaptation. */
floating_t zone_red, zone_green;
int score_step;
floating_t score_step_byavg; // use portion of average score as increment
bool use_komi_ratchet;
bool losing_komi_ratchet; // ratchet even losing komi
int komi_ratchet_maxage;
// runtime, not configuration:
int komi_ratchet_age;
floating_t komi_ratchet;
/* Score-based adaptation. */
floating_t (*adapter)(struct uct_dynkomi *d, struct board *b);
floating_t adapt_base; // [0,1)
/* Sigmoid adaptation rate parameter; see below for details. */
floating_t adapt_phase; // [0,1]
floating_t adapt_rate; // [1,infty)
/* Linear adaptation rate parameter. */
int adapt_moves;
floating_t adapt_dir; // [-1,1]
};
#define TRUSTWORTHY_KOMI_PLAYOUTS 200
static floating_t
board_game_portion(struct dynkomi_adaptive *a, struct board *b)
{
if (!a->adapt_aport) {
int total_moves = b->moves + 2 * board_estimated_moves_left(b);
return (floating_t) b->moves / total_moves;
} else {
int brsize = board_size(b) - 2;
return 1.0 - (floating_t) b->flen / (brsize * brsize);
}
}
static floating_t
adapter_sigmoid(struct uct_dynkomi *d, struct board *b)
{
struct dynkomi_adaptive *a = d->data;
/* Figure out how much to adjust the komi based on the game
* stage. The adaptation rate is 0 at the beginning,
* at game stage a->adapt_phase crosses though 0.5 and
* approaches 1 at the game end; the slope is controlled
* by a->adapt_rate. */
floating_t game_portion = board_game_portion(a, b);
floating_t l = game_portion - a->adapt_phase;
return 1.0 / (1.0 + exp(-a->adapt_rate * l));
}
static floating_t
adapter_linear(struct uct_dynkomi *d, struct board *b)
{
struct dynkomi_adaptive *a = d->data;
/* Figure out how much to adjust the komi based on the game
* stage. We just linearly increase/decrease the adaptation
* rate for first N moves. */
if (b->moves > a->adapt_moves)
return 0;
if (a->adapt_dir < 0)
return 1 - (- a->adapt_dir) * b->moves / a->adapt_moves;
else
return a->adapt_dir * b->moves / a->adapt_moves;
}
static floating_t
komi_by_score(struct uct_dynkomi *d, struct board *b, struct tree *tree, enum stone color)
{
struct dynkomi_adaptive *a = d->data;
if (d->score.playouts < TRUSTWORTHY_KOMI_PLAYOUTS)
return tree->extra_komi;
struct move_stats score = d->score;
/* Almost-reset tree->score to gather fresh stats. */
d->score.playouts = 1;
/* Look at average score and push extra_komi in that direction. */
floating_t p = a->adapter(d, b);
p = a->adapt_base + p * (1 - a->adapt_base);
if (p > 0.9) p = 0.9; // don't get too eager!
floating_t extra_komi = tree->extra_komi + p * score.value;
if (DEBUGL(3))
fprintf(stderr, "mC += %f * %f\n", p, score.value);
return extra_komi;
}
static floating_t
komi_by_value(struct uct_dynkomi *d, struct board *b, struct tree *tree, enum stone color)
{
struct dynkomi_adaptive *a = d->data;
if (d->value.playouts < TRUSTWORTHY_KOMI_PLAYOUTS)
return tree->extra_komi;
struct move_stats value = d->value;
/* Almost-reset tree->value to gather fresh stats. */
d->value.playouts = 1;
/* Correct color POV. */
if (color == S_WHITE)
value.value = 1 - value.value;
/* We have three "value zones":
* red zone | yellow zone | green zone
* ~45% ~60%
* red zone: reduce komi
* yellow zone: do not touch komi
* green zone: enlage komi.
*
* Also, at some point komi will be tuned in such way
* that it will be in green zone but increasing it will
* be unfeasible. Thus, we have a _ratchet_ - we will
* remember the last komi that has put us into the
* red zone, and not use it or go over it. We use the
* ratchet only when giving extra komi, we always want
* to try to reduce extra komi we take.
*
* TODO: Make the ratchet expire after a while. */
/* We use komi_by_color() first to normalize komi
* additions/subtractions, then apply it again on
* return value to restore original komi parity. */
/* Positive extra_komi means that we are _giving_
* komi (winning), negative extra_komi is _taking_
* komi (losing). */
floating_t extra_komi = komi_by_color(tree->extra_komi, color);
int score_step_red = -a->score_step;
int score_step_green = a->score_step;
if (a->score_step_byavg != 0) {
struct move_stats score = d->score;
/* Almost-reset tree->score to gather fresh stats. */
d->score.playouts = 1;
/* Correct color POV. */
if (color == S_WHITE)
score.value = - score.value;
if (score.value > 0)
score_step_green = round(score.value * a->score_step_byavg);
else
score_step_red = round(-score.value * a->score_step_byavg);
if (score_step_green < 0 || score_step_red > 0) {
/* The steps are in bad direction - keep still. */
return komi_by_color(extra_komi, color);
}
}
/* Wear out the ratchet. */
if (a->use_komi_ratchet && a->komi_ratchet_maxage > 0) {
a->komi_ratchet_age += value.playouts;
if (a->komi_ratchet_age > a->komi_ratchet_maxage) {
a->komi_ratchet = 1000;
a->komi_ratchet_age = 0;
}
}
if (value.value < a->zone_red) {
/* Red zone. Take extra komi. */
if (DEBUGL(3))
fprintf(stderr, "[red] %f, step %d | komi ratchet %f age %d/%d -> %f\n",
value.value, score_step_red, a->komi_ratchet, a->komi_ratchet_age, a->komi_ratchet_maxage, extra_komi);
if (a->losing_komi_ratchet || extra_komi > 0) {
a->komi_ratchet = extra_komi;
a->komi_ratchet_age = 0;
}
extra_komi += score_step_red;
return komi_by_color(extra_komi, color);
} else if (value.value < a->zone_green) {
/* Yellow zone, do nothing. */
return komi_by_color(extra_komi, color);
} else {
/* Green zone. Give extra komi. */
if (DEBUGL(3))
fprintf(stderr, "[green] %f, step %d | komi ratchet %f age %d/%d\n",
value.value, score_step_green, a->komi_ratchet, a->komi_ratchet_age, a->komi_ratchet_maxage);
extra_komi += score_step_green;
if (a->use_komi_ratchet && extra_komi >= a->komi_ratchet)
extra_komi = a->komi_ratchet - 1;
return komi_by_color(extra_komi, color);
}
}
static floating_t
bounded_komi(struct dynkomi_adaptive *a, struct board *b,
enum stone color, floating_t komi, floating_t max_losing_komi)
{
/* At the end of game, disallow losing komi. */
if (komi_by_color(komi, color) < 0
&& board_game_portion(a, b) > a->losing_komi_stop)
return 0;
/* Get lower bound on komi we take so that we don't underperform
* too much. */
floating_t min_komi = komi_by_color(- max_losing_komi, color);
if (komi_by_color(komi - min_komi, color) > 0)
return komi;
else
return min_komi;
}
static floating_t
adaptive_permove(struct uct_dynkomi *d, struct board *b, struct tree *tree)
{
struct dynkomi_adaptive *a = d->data;
enum stone color = stone_other(tree->root_color);
/* We do not use extra komi at the game end - we are not
* to fool ourselves at this point. */
if (a->no_komi_at_game_end && board_estimated_moves_left(b) <= MIN_MOVES_LEFT) {
tree->use_extra_komi = false;
return 0;
}
if (DEBUGL(4))
fprintf(stderr, "m %d/%d ekomi %f permove %f/%d\n",
b->moves, a->lead_moves, tree->extra_komi,
d->score.value, d->score.playouts);
if (b->moves <= a->lead_moves)
return bounded_komi(a, b, color,
board_effective_handicap(b, 7 /* XXX */),
a->max_losing_komi);
floating_t komi = a->indicator(d, b, tree, color);
if (DEBUGL(4))
fprintf(stderr, "dynkomi: %f -> %f\n", tree->extra_komi, komi);
return bounded_komi(a, b, color, komi, a->max_losing_komi);
}
static floating_t
adaptive_persim(struct uct_dynkomi *d, struct board *b, struct tree *tree, struct tree_node *node)
{
return tree->extra_komi;
}
struct uct_dynkomi *
uct_dynkomi_init_adaptive(struct uct *u, char *arg, struct board *b)
{
struct uct_dynkomi *d = calloc2(1, sizeof(*d));
d->uct = u;
d->permove = adaptive_permove;
d->persim = adaptive_persim;
d->done = generic_done;
struct dynkomi_adaptive *a = calloc2(1, sizeof(*a));
d->data = a;
a->lead_moves = board_large(b) ? 20 : 4; // XXX
a->max_losing_komi = 30;
a->losing_komi_stop = 1.0f;
a->no_komi_at_game_end = true;
a->indicator = komi_by_value;
a->adapter = adapter_sigmoid;
a->adapt_rate = -18;
a->adapt_phase = 0.65;
a->adapt_moves = 200;
a->adapt_dir = -0.5;
a->zone_red = 0.45;
a->zone_green = 0.50;
a->score_step = 1;
a->use_komi_ratchet = true;
a->komi_ratchet_maxage = 0;
a->komi_ratchet = 1000;
if (arg) {
char *optspec, *next = arg;
while (*next) {
optspec = next;
next += strcspn(next, ":");
if (*next) { *next++ = 0; } else { *next = 0; }
char *optname = optspec;
char *optval = strchr(optspec, '=');
if (optval) *optval++ = 0;
if (!strcasecmp(optname, "lead_moves") && optval) {
/* Do not adjust komi adaptively for first
* N moves. */
a->lead_moves = atoi(optval);
} else if (!strcasecmp(optname, "max_losing_komi") && optval) {
a->max_losing_komi = atof(optval);
} else if (!strcasecmp(optname, "losing_komi_stop") && optval) {
a->losing_komi_stop = atof(optval);
} else if (!strcasecmp(optname, "no_komi_at_game_end")) {
a->no_komi_at_game_end = !optval || atoi(optval);
} else if (!strcasecmp(optname, "indicator")) {
/* Adaptatation indicator - how to decide
* the adaptation rate and direction. */
if (!strcasecmp(optval, "value")) {
/* Winrate w/ komi so far. */
a->indicator = komi_by_value;
} else if (!strcasecmp(optval, "score")) {
/* Expected score w/ current komi. */
a->indicator = komi_by_score;
} else {
fprintf(stderr, "UCT: Invalid indicator %s\n", optval);
exit(1);
}
/* value indicator settings */
} else if (!strcasecmp(optname, "zone_red") && optval) {
a->zone_red = atof(optval);
} else if (!strcasecmp(optname, "zone_green") && optval) {
a->zone_green = atof(optval);
} else if (!strcasecmp(optname, "score_step") && optval) {
a->score_step = atoi(optval);
} else if (!strcasecmp(optname, "score_step_byavg") && optval) {
a->score_step_byavg = atof(optval);
} else if (!strcasecmp(optname, "use_komi_ratchet")) {
a->use_komi_ratchet = !optval || atoi(optval);
} else if (!strcasecmp(optname, "losing_komi_ratchet")) {
a->losing_komi_ratchet = !optval || atoi(optval);
} else if (!strcasecmp(optname, "komi_ratchet_age") && optval) {
a->komi_ratchet_maxage = atoi(optval);
/* score indicator settings */
} else if (!strcasecmp(optname, "adapter") && optval) {
/* Adaptatation method. */
if (!strcasecmp(optval, "sigmoid")) {
a->adapter = adapter_sigmoid;
} else if (!strcasecmp(optval, "linear")) {
a->adapter = adapter_linear;
} else {
fprintf(stderr, "UCT: Invalid adapter %s\n", optval);
exit(1);
}
} else if (!strcasecmp(optname, "adapt_base") && optval) {
/* Adaptation base rate; see above. */
a->adapt_base = atof(optval);
} else if (!strcasecmp(optname, "adapt_rate") && optval) {
/* Adaptation slope; see above. */
a->adapt_rate = atof(optval);
} else if (!strcasecmp(optname, "adapt_phase") && optval) {
/* Adaptation phase shift; see above. */
a->adapt_phase = atof(optval);
} else if (!strcasecmp(optname, "adapt_moves") && optval) {
/* Adaptation move amount; see above. */
a->adapt_moves = atoi(optval);
} else if (!strcasecmp(optname, "adapt_aport")) {
a->adapt_aport = !optval || atoi(optval);
} else if (!strcasecmp(optname, "adapt_dir") && optval) {
/* Adaptation direction vector; see above. */
a->adapt_dir = atof(optval);
} else {
fprintf(stderr, "uct: Invalid dynkomi argument %s or missing value\n", optname);
exit(1);
}
}
}
return d;
}