pachi_py/pachi/uct/policy/ucb1amaf.c (338 lines of code) (raw):
#include <assert.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//#define DEBUG
#include "board.h"
#include "debug.h"
#include "move.h"
#include "random.h"
#include "tactics/util.h"
#include "uct/internal.h"
#include "uct/tree.h"
#include "uct/policy/generic.h"
/* This implements the UCB1 policy with an extra AMAF heuristics. */
struct ucb1_policy_amaf {
/* This is what the Modification of UCT with Patterns in Monte Carlo Go
* paper calls 'p'. Original UCB has this on 2, but this seems to
* produce way too wide searches; reduce this to get deeper and
* narrower readouts - try 0.2. */
floating_t explore_p;
/* Rescale virtual loss value to square root of #threads. This mitigates
* the number of virtual losses added in case of a large amount of
* threads; it seems that with linear virtual losses, overly diverse
* exploration caused by this may cause a wrong mean value computed
* for the parent node. */
bool vloss_sqrt;
/* In distributed mode, encourage different slaves to work on different
* parts of the tree by adding virtual wins to different nodes. */
int virtual_win;
int root_virtual_win;
int vwin_min_playouts;
/* First Play Urgency - if set to less than infinity (the MoGo paper
* above reports 1.0 as the best), new branches are explored only
* if none of the existing ones has higher urgency than fpu. */
floating_t fpu;
unsigned int equiv_rave;
bool sylvain_rave;
/* Give more weight to moves played earlier. */
int distance_rave;
/* Give 0 or negative rave bonus to ko threats before taking the ko.
1=normal bonus, 0=no bonus, -1=invert rave bonus, -2=double penalty... */
int threat_rave;
/* Coefficient of local tree values embedded in RAVE. */
floating_t ltree_rave;
/* Coefficient of criticality embedded in RAVE. */
floating_t crit_rave;
int crit_min_playouts;
floating_t crit_plthres_coef;
bool crit_negative;
bool crit_negflip;
bool crit_amaf;
bool crit_lvalue;
};
static inline floating_t fast_sqrt(unsigned int x)
{
static const floating_t table[] = {
0, 1, 1.41421356237309504880, 1.73205080756887729352,
2.00000000000000000000, 2.23606797749978969640,
2.44948974278317809819, 2.64575131106459059050,
2.82842712474619009760, 3.00000000000000000000,
3.16227766016837933199, 3.31662479035539984911,
3.46410161513775458705, 3.60555127546398929311,
3.74165738677394138558, 3.87298334620741688517,
4.00000000000000000000, 4.12310562561766054982,
4.24264068711928514640, 4.35889894354067355223,
4.47213595499957939281, 4.58257569495584000658,
4.69041575982342955456, 4.79583152331271954159,
4.89897948556635619639, 5.00000000000000000000,
5.09901951359278483002, 5.19615242270663188058,
5.29150262212918118100, 5.38516480713450403125,
5.47722557505166113456, 5.56776436283002192211,
5.65685424949238019520, 5.74456264653802865985,
5.83095189484530047087, 5.91607978309961604256,
6.00000000000000000000, 6.08276253029821968899,
6.16441400296897645025, 6.24499799839839820584,
6.32455532033675866399, 6.40312423743284868648,
6.48074069840786023096, 6.55743852430200065234,
6.63324958071079969822, 6.70820393249936908922,
6.78232998312526813906, 6.85565460040104412493,
6.92820323027550917410, 7.00000000000000000000,
7.07106781186547524400, 7.14142842854284999799,
7.21110255092797858623, 7.28010988928051827109,
7.34846922834953429459, 7.41619848709566294871,
7.48331477354788277116, 7.54983443527074969723,
7.61577310586390828566, 7.68114574786860817576,
7.74596669241483377035, 7.81024967590665439412,
7.87400787401181101968, 7.93725393319377177150,
};
if (x < sizeof(table) / sizeof(*table)) {
return table[x];
} else {
return sqrt(x);
}
}
#define URAVE_DEBUG if (0)
static inline floating_t
ucb1rave_evaluate(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity)
{
struct ucb1_policy_amaf *b = p->data;
struct tree_node *node = descent->node;
struct tree_node *lnode = descent->lnode;
struct move_stats n = node->u, r = node->amaf;
if (p->uct->amaf_prior) {
stats_merge(&r, &node->prior);
} else {
stats_merge(&n, &node->prior);
}
if (p->uct->virtual_loss) {
/* Add virtual loss if we need to; this is used to discourage
* other threads from visiting this node in case of multiple
* threads doing the tree search. */
floating_t vloss_coeff = b->vloss_sqrt ? sqrt(p->uct->threads) / p->uct->threads : 1.;
struct move_stats c = { .value = parity > 0 ? 0. : 1., .playouts = node->descents * vloss_coeff };
stats_merge(&n, &c);
}
/* Local tree heuristics. */
assert(!lnode || lnode->parent);
if (p->uct->local_tree && b->ltree_rave > 0 && lnode
&& (p->uct->local_tree_rootchoose || lnode->parent->parent)) {
struct move_stats l = lnode->u;
l.playouts = ((floating_t) l.playouts) * b->ltree_rave / LTREE_PLAYOUTS_MULTIPLIER;
URAVE_DEBUG fprintf(stderr, "[ltree] adding [%s] %f%%%d to [%s] RAVE %f%%%d\n",
coord2sstr(node_coord(lnode), tree->board), l.value, l.playouts,
coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
stats_merge(&r, &l);
}
/* Criticality heuristics. */
if (b->crit_rave > 0 && (b->crit_plthres_coef > 0
? node->u.playouts > tree->root->u.playouts * b->crit_plthres_coef
: node->u.playouts > b->crit_min_playouts)) {
floating_t crit = tree_node_criticality(tree, node);
if (b->crit_negative || crit > 0) {
floating_t val = 1.0f;
if (b->crit_negflip && crit < 0) {
val = 0;
crit = -crit;
}
struct move_stats c = {
.value = tree_node_get_value(tree, parity, val),
.playouts = crit * r.playouts * b->crit_rave
};
URAVE_DEBUG fprintf(stderr, "[crit] adding %f%%%d to [%s] RAVE %f%%%d\n",
c.value, c.playouts,
coord2sstr(node_coord(node), tree->board), r.value, r.playouts);
stats_merge(&r, &c);
}
}
floating_t value = 0;
if (n.playouts) {
if (r.playouts) {
/* At the beginning, beta is at 1 and RAVE is used.
* At b->equiv_rate, beta is at 1/3 and gets steeper on. */
floating_t beta;
if (b->sylvain_rave) {
beta = (floating_t) r.playouts / (r.playouts + n.playouts
+ (floating_t) n.playouts * r.playouts / b->equiv_rave);
} else {
/* XXX: This can be cached in descend; but we don't use this by default. */
beta = sqrt(b->equiv_rave / (3 * node->parent->u.playouts + b->equiv_rave));
}
value = beta * r.value + (1.f - beta) * n.value;
URAVE_DEBUG fprintf(stderr, "\t%s value = %f * %f + (1 - %f) * %f (prior %f)\n",
coord2sstr(node_coord(node), tree->board), beta, r.value, beta, n.value, node->prior.value);
} else {
value = n.value;
URAVE_DEBUG fprintf(stderr, "\t%s value = %f (prior %f)\n",
coord2sstr(node_coord(node), tree->board), n.value, node->prior.value);
}
} else if (r.playouts) {
value = r.value;
URAVE_DEBUG fprintf(stderr, "\t%s value = rave %f (prior %f)\n",
coord2sstr(node_coord(node), tree->board), r.value, node->prior.value);
}
descent->value.playouts = r.playouts + n.playouts;
descent->value.value = value;
return tree_node_get_value(tree, parity, value);
}
void
ucb1rave_descend(struct uct_policy *p, struct tree *tree, struct uct_descent *descent, int parity, bool allow_pass)
{
struct ucb1_policy_amaf *b = p->data;
floating_t nconf = 1.f;
if (b->explore_p > 0)
nconf = sqrt(log(descent->node->u.playouts + descent->node->prior.playouts));
struct uct *u = p->uct;
int vwin = 0;
if (u->max_slaves > 0 && u->slave_index >= 0)
vwin = descent->node == tree->root ? b->root_virtual_win : b->virtual_win;
int child = 0;
uctd_try_node_children(tree, descent, allow_pass, parity, u->tenuki_d, di, urgency) {
struct tree_node *ni = di.node;
urgency = ucb1rave_evaluate(p, tree, &di, parity);
/* In distributed mode, encourage different slaves to work on different
* parts of the tree. We rely on the fact that children (if they exist)
* are the same and in the same order in all slaves. */
if (vwin > 0 && ni->u.playouts > b->vwin_min_playouts && (child - u->slave_index) % u->max_slaves == 0)
urgency += vwin / (ni->u.playouts + vwin);
if (ni->u.playouts > 0 && b->explore_p > 0) {
urgency += b->explore_p * nconf / fast_sqrt(ni->u.playouts);
} else if (ni->u.playouts + ni->amaf.playouts + ni->prior.playouts == 0) {
/* assert(!u->even_eqex); */
urgency = b->fpu;
}
} uctd_set_best_child(di, urgency);
uctd_get_best_child(descent);
}
/* Return the length of the current ko (number of moves up to to the last ko capture),
* 0 if the sequence is empty or doesn't start with a ko capture.
* B captures a ko
* W plays a ko threat
* B answers ko threat
* W re-captures the ko <- return 4
* B plays a ko threat
* W connects the ko */
static inline int ko_length(bool *ko_capture_map, int map_length)
{
if (map_length <= 0 || !ko_capture_map[0]) return 0;
int length = 1;
while (length + 2 < map_length && ko_capture_map[length + 2]) length += 3;
return length;
}
void
ucb1amaf_update(struct uct_policy *p, struct tree *tree, struct tree_node *node,
enum stone node_color, enum stone player_color,
struct playout_amafmap *map, struct board *final_board,
floating_t result)
{
struct ucb1_policy_amaf *b = p->data;
enum stone winner_color = result > 0.5 ? S_BLACK : S_WHITE;
/* Record of the random playout - for each intersection coord,
* first_move[coord] is the index map->game of the first move
* at this coordinate, or INT_MAX if the move was not played.
* The parity gives the color of this move.
*/
int first_map[board_size2(final_board)+1];
int *first_move = &first_map[1]; // +1 for pass
#if 0
struct board bb; bb.size = 9+2;
for (struct tree_node *ni = node; ni; ni = ni->parent)
fprintf(stderr, "%s ", coord2sstr(node_coord(ni), &bb));
fprintf(stderr, "[color %d] update result %d (color %d)\n",
node_color, result, player_color);
#endif
/* Initialize first_move */
for (int i = pass; i < board_size2(final_board); i++) first_move[i] = INT_MAX;
int move;
assert(map->gamelen > 0);
for (move = map->gamelen - 1; move >= map->game_baselen; move--)
first_move[map->game[move]] = move;
while (node) {
if (!b->crit_amaf && !is_pass(node_coord(node))) {
stats_add_result(&node->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), winner_color), 1);
stats_add_result(&node->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(node), S_BLACK), 1);
}
stats_add_result(&node->u, result, 1);
bool *ko_capture_map = &map->is_ko_capture[move+1];
int max_threat_dist = b->threat_rave <= 0 ? ko_length(ko_capture_map, map->gamelen - (move+1)) : -1;
/* This loop ignores symmetry considerations, but they should
* matter only at a point when AMAF doesn't help much. */
assert(map->game_baselen >= 0);
for (struct tree_node *ni = node->children; ni; ni = ni->sibling) {
if (is_pass(node_coord(ni))) continue;
/* Use the child move only if it was first played by the same color. */
int first = first_move[node_coord(ni)];
if (first == INT_MAX) continue;
assert(first > move && first < map->gamelen);
int distance = first - (move + 1);
if (distance & 1) continue;
int weight = 1;
floating_t res = result;
/* Don't give amaf bonus to a ko threat before taking the ko.
* http://www.grappa.univ-lille3.fr/~coulom/Aja_PhD_Thesis.pdf
*/
if (distance <= max_threat_dist && distance % 6 == 4) {
weight = - b->threat_rave;
res = 1.0 - res;
} else if (b->distance_rave != 0) {
/* Give more weight to moves played earlier */
weight += b->distance_rave * (map->gamelen - first) / (map->gamelen - move);
}
stats_add_result(&ni->amaf, res, weight);
if (b->crit_amaf) {
stats_add_result(&ni->winner_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), winner_color), 1);
stats_add_result(&ni->black_owner, board_local_value(b->crit_lvalue, final_board, node_coord(ni), S_BLACK), 1);
}
#if 0
struct board bb; bb.size = 9+2;
fprintf(stderr, "* %s<%"PRIhash"> -> %s<%"PRIhash"> [%d/%f => %d/%f]\n",
coord2sstr(node_coord(node), &bb), node->hash,
coord2sstr(node_coord(ni), &bb), ni->hash,
player_color, result, move, res);
#endif
}
if (node->parent) {
assert(move >= 0 && map->game[move] == node_coord(node) && first_move[node_coord(node)] > move);
first_move[node_coord(node)] = move;
move--;
}
node = node->parent;
}
}
void
ucb1amaf_done(struct uct_policy *p)
{
free(p->data);
free(p);
}
struct uct_policy *
policy_ucb1amaf_init(struct uct *u, char *arg, struct board *board)
{
struct uct_policy *p = calloc2(1, sizeof(*p));
struct ucb1_policy_amaf *b = calloc2(1, sizeof(*b));
p->uct = u;
p->data = b;
p->done = ucb1amaf_done;
p->choose = uctp_generic_choose;
p->winner = uctp_generic_winner;
p->evaluate = ucb1rave_evaluate;
p->descend = ucb1rave_descend;
p->update = ucb1amaf_update;
p->wants_amaf = true;
b->explore_p = 0;
b->equiv_rave = board_large(board) ? 4000 : 3000;
b->fpu = INFINITY;
b->sylvain_rave = true;
b->distance_rave = 3;
b->threat_rave = 0;
b->ltree_rave = 0.75f;
b->crit_rave = 1.1f;
b->crit_min_playouts = 2000;
b->crit_negative = 1;
b->crit_amaf = 0;
b->vloss_sqrt = true;
b->virtual_win = 5;
b->root_virtual_win = 30;
b->vwin_min_playouts = 1000;
if (arg) {
char *optspec, *next = arg;
while (*next) {
optspec = next;
next += strcspn(next, ":");
if (*next) { *next++ = 0; } else { *next = 0; }
char *optname = optspec;
char *optval = strchr(optspec, '=');
if (optval) *optval++ = 0;
if (!strcasecmp(optname, "explore_p")) {
b->explore_p = atof(optval);
} else if (!strcasecmp(optname, "fpu") && optval) {
b->fpu = atof(optval);
} else if (!strcasecmp(optname, "equiv_rave") && optval) {
b->equiv_rave = atof(optval);
} else if (!strcasecmp(optname, "sylvain_rave")) {
b->sylvain_rave = !optval || *optval == '1';
} else if (!strcasecmp(optname, "distance_rave") && optval) {
b->distance_rave = atoi(optval);
} else if (!strcasecmp(optname, "threat_rave") && optval) {
b->threat_rave = atoi(optval);
} else if (!strcasecmp(optname, "ltree_rave") && optval) {
b->ltree_rave = atof(optval);
} else if (!strcasecmp(optname, "crit_rave") && optval) {
b->crit_rave = atof(optval);
} else if (!strcasecmp(optname, "crit_min_playouts") && optval) {
b->crit_min_playouts = atoi(optval);
} else if (!strcasecmp(optname, "crit_plthres_coef") && optval) {
b->crit_plthres_coef = atof(optval);
} else if (!strcasecmp(optname, "crit_negative")) {
b->crit_negative = !optval || *optval == '1';
} else if (!strcasecmp(optname, "crit_negflip")) {
b->crit_negflip = !optval || *optval == '1';
} else if (!strcasecmp(optname, "crit_amaf")) {
b->crit_amaf = !optval || *optval == '1';
} else if (!strcasecmp(optname, "crit_lvalue")) {
b->crit_lvalue = !optval || *optval == '1';
} else if (!strcasecmp(optname, "virtual_win") && optval) {
b->virtual_win = atoi(optval);
} else if (!strcasecmp(optname, "root_virtual_win") && optval) {
b->root_virtual_win = atoi(optval);
} else if (!strcasecmp(optname, "vwin_min_playouts") && optval) {
b->vwin_min_playouts = atoi(optval);
} else if (!strcasecmp(optname, "vloss_sqrt")) {
b->vloss_sqrt = !optval || *optval == '1';
} else {
fprintf(stderr, "ucb1amaf: Invalid policy argument %s or missing value\n",
optname);
exit(1);
}
}
}
return p;
}