pachi_py/pachi/uct/tree.c (582 lines of code) (raw):
#include <assert.h>
#include <math.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define DEBUG
#include "board.h"
#include "debug.h"
#include "engine.h"
#include "move.h"
#include "playout.h"
#include "tactics/util.h"
#include "timeinfo.h"
#include "uct/internal.h"
#include "uct/prior.h"
#include "uct/tree.h"
#include "uct/slave.h"
/* Allocate tree node(s). The returned nodes are initialized with zeroes.
* Returns NULL if not enough memory.
* This function may be called by multiple threads in parallel. */
static struct tree_node *
tree_alloc_node(struct tree *t, int count, bool fast_alloc)
{
struct tree_node *n = NULL;
size_t nsize = count * sizeof(*n);
unsigned long old_size = __sync_fetch_and_add(&t->nodes_size, nsize);
if (fast_alloc) {
if (old_size + nsize > t->max_tree_size)
return NULL;
assert(t->nodes != NULL);
n = (struct tree_node *)(t->nodes + old_size);
memset(n, 0, nsize);
} else {
n = calloc2(count, sizeof(*n));
}
return n;
}
/* Initialize a node at a given place in memory.
* This function may be called by multiple threads in parallel. */
static void
tree_setup_node(struct tree *t, struct tree_node *n, coord_t coord, int depth)
{
static volatile unsigned int hash = 0;
n->coord = coord;
n->depth = depth;
/* n->hash is used only for debugging. It is very likely (but not
* guaranteed) to be unique. */
hash_t h = n - (struct tree_node *)0;
n->hash = (h << 32) + (hash++ & 0xffffffff);
if (depth > t->max_depth)
t->max_depth = depth;
}
/* Allocate and initialize a node. Returns NULL (fast_alloc mode)
* or exits the main program if not enough memory.
* This function may be called by multiple threads in parallel. */
static struct tree_node *
tree_init_node(struct tree *t, coord_t coord, int depth, bool fast_alloc)
{
struct tree_node *n;
n = tree_alloc_node(t, 1, fast_alloc);
if (!n) return NULL;
tree_setup_node(t, n, coord, depth);
return n;
}
/* Create a tree structure. Pre-allocate all nodes if max_tree_size is > 0. */
struct tree *
tree_init(struct board *board, enum stone color, unsigned long max_tree_size,
unsigned long max_pruned_size, unsigned long pruning_threshold, floating_t ltree_aging, int hbits)
{
struct tree *t = calloc2(1, sizeof(*t));
t->board = board;
t->max_tree_size = max_tree_size;
t->max_pruned_size = max_pruned_size;
t->pruning_threshold = pruning_threshold;
if (max_tree_size != 0) {
t->nodes = malloc2(max_tree_size);
/* The nodes buffer doesn't need initialization. This is currently
* done by tree_init_node to spread the load. Doing a memset for the
* entire buffer here would be too slow for large trees (>10 GB). */
}
/* The root PASS move is only virtual, we never play it. */
t->root = tree_init_node(t, pass, 0, t->nodes);
t->root_symmetry = board->symmetry;
t->root_color = stone_other(color); // to research black moves, root will be white
t->ltree_black = tree_init_node(t, pass, 0, false);
t->ltree_white = tree_init_node(t, pass, 0, false);
t->ltree_aging = ltree_aging;
t->hbits = hbits;
if (hbits) t->htable = uct_htable_alloc(hbits);
return t;
}
/* This function may be called by multiple threads in parallel on the
* same tree, but not on node n. n may be detached from the tree but
* must have been created in this tree originally.
* It returns the remaining size of the tree after n has been freed. */
static unsigned long
tree_done_node(struct tree *t, struct tree_node *n)
{
struct tree_node *ni = n->children;
while (ni) {
struct tree_node *nj = ni->sibling;
tree_done_node(t, ni);
ni = nj;
}
free(n);
unsigned long old_size = __sync_fetch_and_sub(&t->nodes_size, sizeof(*n));
return old_size - sizeof(*n);
}
struct subtree_ctx {
struct tree *t;
struct tree_node *n;
};
/* Worker thread for tree_done_node_detached(). Only for fast_alloc=false. */
static void *
tree_done_node_worker(void *ctx_)
{
struct subtree_ctx *ctx = ctx_;
char *str = coord2str(node_coord(ctx->n), ctx->t->board);
unsigned long tree_size = tree_done_node(ctx->t, ctx->n);
if (!tree_size)
free(ctx->t);
if (DEBUGL(2))
fprintf(stderr, "done freeing node at %s, tree size %lu\n", str, tree_size);
free(str);
free(ctx);
return NULL;
}
/* Asynchronously free the subtree of nodes rooted at n. If the tree becomes
* empty free the tree also. Only for fast_alloc=false. */
static void
tree_done_node_detached(struct tree *t, struct tree_node *n)
{
if (n->u.playouts < 1000) { // no thread for small tree
if (!tree_done_node(t, n))
free(t);
return;
}
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
pthread_t thread;
struct subtree_ctx *ctx = malloc2(sizeof(struct subtree_ctx));
ctx->t = t;
ctx->n = n;
pthread_create(&thread, &attr, tree_done_node_worker, ctx);
pthread_attr_destroy(&attr);
}
void
tree_done(struct tree *t)
{
tree_done_node(t, t->ltree_black);
tree_done_node(t, t->ltree_white);
if (t->htable) free(t->htable);
if (t->nodes) {
free(t->nodes);
free(t);
} else if (!tree_done_node(t, t->root)) {
free(t);
/* A tree_done_node_worker might still be running on this tree but
* it will free the tree later. It is also freeing nodes faster than
* we will create new ones. */
}
}
static void
tree_node_dump(struct tree *tree, struct tree_node *node, int treeparity, int l, int thres)
{
for (int i = 0; i < l; i++) fputc(' ', stderr);
int children = 0;
for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
children++;
/* We use 1 as parity, since for all nodes we want to know the
* win probability of _us_, not the node color. */
fprintf(stderr, "[%s] %.3f/%d [prior %.3f/%d amaf %.3f/%d crit %.3f vloss %d] h=%x c#=%d <%"PRIhash">\n",
coord2sstr(node_coord(node), tree->board),
tree_node_get_value(tree, treeparity, node->u.value), node->u.playouts,
tree_node_get_value(tree, treeparity, node->prior.value), node->prior.playouts,
tree_node_get_value(tree, treeparity, node->amaf.value), node->amaf.playouts,
tree_node_criticality(tree, node), node->descents,
node->hints, children, node->hash);
/* Print nodes sorted by #playouts. */
struct tree_node *nbox[1000]; int nboxl = 0;
for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
if (ni->u.playouts > thres)
nbox[nboxl++] = ni;
while (true) {
int best = -1;
for (int i = 0; i < nboxl; i++)
if (nbox[i] && (best < 0 || nbox[i]->u.playouts > nbox[best]->u.playouts))
best = i;
if (best < 0)
break;
tree_node_dump(tree, nbox[best], treeparity, l + 1, /* node->u.value < 0.1 ? 0 : */ thres);
nbox[best] = NULL;
}
}
void
tree_dump(struct tree *tree, double thres)
{
int thres_abs = thres > 0 ? tree->root->u.playouts * thres : thres;
fprintf(stderr, "(UCT tree; root %s; extra komi %f; max depth %d)\n",
stone2str(tree->root_color), tree->extra_komi,
tree->max_depth - tree->root->depth);
tree_node_dump(tree, tree->root, 1, 0, thres_abs);
if (DEBUGL(3) && tree->ltree_black) {
fprintf(stderr, "B local tree:\n");
tree_node_dump(tree, tree->ltree_black, tree->root_color == S_WHITE ? 1 : -1, 0, thres_abs);
fprintf(stderr, "W local tree:\n");
tree_node_dump(tree, tree->ltree_white, tree->root_color == S_BLACK ? 1 : -1, 0, thres_abs);
}
}
static char *
tree_book_name(struct board *b)
{
static char buf[256];
if (b->handicap > 0) {
sprintf(buf, "ucttbook-%d-%02.01f-h%d.pachitree", b->size - 2, b->komi, b->handicap);
} else {
sprintf(buf, "ucttbook-%d-%02.01f.pachitree", b->size - 2, b->komi);
}
return buf;
}
static void
tree_node_save(FILE *f, struct tree_node *node, int thres)
{
bool save_children = node->u.playouts >= thres;
if (!save_children)
node->is_expanded = 0;
fputc(1, f);
fwrite(((void *) node) + offsetof(struct tree_node, u),
sizeof(struct tree_node) - offsetof(struct tree_node, u),
1, f);
if (save_children) {
for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
tree_node_save(f, ni, thres);
} else {
if (node->children)
node->is_expanded = 1;
}
fputc(0, f);
}
void
tree_save(struct tree *tree, struct board *b, int thres)
{
char *filename = tree_book_name(b);
FILE *f = fopen(filename, "wb");
if (!f) {
perror("fopen");
return;
}
tree_node_save(f, tree->root, thres);
fputc(0, f);
fclose(f);
}
void
tree_node_load(FILE *f, struct tree_node *node, int *num)
{
(*num)++;
fread(((void *) node) + offsetof(struct tree_node, u),
sizeof(struct tree_node) - offsetof(struct tree_node, u),
1, f);
/* Keep values in sane scale, otherwise we start overflowing. */
#define MAX_PLAYOUTS 10000000
if (node->u.playouts > MAX_PLAYOUTS) {
node->u.playouts = MAX_PLAYOUTS;
}
if (node->amaf.playouts > MAX_PLAYOUTS) {
node->amaf.playouts = MAX_PLAYOUTS;
}
memcpy(&node->pu, &node->u, sizeof(node->u));
struct tree_node *ni = NULL, *ni_prev = NULL;
while (fgetc(f)) {
ni_prev = ni; ni = calloc2(1, sizeof(*ni));
if (!node->children)
node->children = ni;
else
ni_prev->sibling = ni;
ni->parent = node;
tree_node_load(f, ni, num);
}
}
void
tree_load(struct tree *tree, struct board *b)
{
char *filename = tree_book_name(b);
FILE *f = fopen(filename, "rb");
if (!f)
return;
fprintf(stderr, "Loading opening tbook %s...\n", filename);
int num = 0;
if (fgetc(f))
tree_node_load(f, tree->root, &num);
fprintf(stderr, "Loaded %d nodes.\n", num);
fclose(f);
}
/* Copy the subtree rooted at node: all nodes at or below depth
* or with at least threshold playouts. Only for fast_alloc.
* The code is destructive on src. The relative order of children of
* a given node is preserved (assumed by tree_get_node in particular).
* Returns the copy of node in the destination tree, or NULL
* if we could not copy it. */
static struct tree_node *
tree_prune(struct tree *dest, struct tree *src, struct tree_node *node,
int threshold, int depth)
{
assert(dest->nodes && node);
struct tree_node *n2 = tree_alloc_node(dest, 1, true);
if (!n2)
return NULL;
*n2 = *node;
if (n2->depth > dest->max_depth)
dest->max_depth = n2->depth;
n2->children = NULL;
n2->is_expanded = false;
if (node->depth >= depth && node->u.playouts < threshold)
return n2;
/* For deep nodes with many playouts, we must copy all children,
* even those with zero playouts, because partially expanded
* nodes are not supported. Considering them as fully expanded
* would degrade the playing strength. The only exception is
* when dest becomes full, but this should never happen in practice
* if threshold is chosen to limit the number of nodes traversed. */
struct tree_node *ni = node->children;
if (!ni)
return n2;
struct tree_node **prev2 = &(n2->children);
while (ni) {
struct tree_node *ni2 = tree_prune(dest, src, ni, threshold, depth);
if (!ni2) break;
*prev2 = ni2;
prev2 = &(ni2->sibling);
ni2->parent = n2;
ni = ni->sibling;
}
if (!ni) {
n2->is_expanded = true;
} else {
n2->children = NULL; // avoid partially expanded nodes
}
return n2;
}
/* The following constants are used for garbage collection of nodes.
* A tree is considered large if the top node has >= 40K playouts.
* For such trees, we copy deep nodes only if they have enough
* playouts, with a gradually increasing threshold up to 40.
* These constants define how much time we're willing to spend
* scanning the source tree when promoting a move. The chosen values
* make worst case pruning in about 3s for 20 GB ram, and this
* is only for long thinking time (>1M playouts). For fast games the
* trees don't grow large. For small ram or fast game we copy the
* entire tree. These values do not degrade playing strength and are
* necessary to avoid losing on time; increasing DEEP_PLAYOUTS_THRESHOLD
* or decreasing LARGE_TREE_PLAYOUTS will make the program faster but
* playing worse. */
#define LARGE_TREE_PLAYOUTS 40000LL
#define DEEP_PLAYOUTS_THRESHOLD 40
/* Garbage collect the tree early if the top node has < 5K playouts,
* to avoid having to do it later on a large subtree.
* This guarantees garbage collection in < 1s. */
#define SMALL_TREE_PLAYOUTS 5000
/* Free all the tree, keeping only the subtree rooted at node.
* Prune the subtree if necessary to fit in memory or
* to save time scanning the tree.
* Returns the moved node. Only for fast_alloc. */
struct tree_node *
tree_garbage_collect(struct tree *tree, struct tree_node *node)
{
assert(tree->nodes && !node->parent && !node->sibling);
double start_time = time_now();
unsigned long orig_size = tree->nodes_size;
struct tree *temp_tree = tree_init(tree->board, tree->root_color,
tree->max_pruned_size, 0, 0, tree->ltree_aging, 0);
temp_tree->nodes_size = 0; // We do not want the dummy pass node
struct tree_node *temp_node;
/* Find the maximum depth at which we can copy all nodes. */
int max_nodes = 1;
for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
max_nodes++;
unsigned long nodes_size = max_nodes * sizeof(*node);
int max_depth = node->depth;
while (nodes_size < tree->max_pruned_size && max_nodes > 1) {
max_nodes--;
nodes_size += max_nodes * nodes_size;
max_depth++;
}
/* Copy all nodes for small trees. For large trees, copy all nodes
* with depth <= max_depth, and all nodes with enough playouts.
* Avoiding going too deep (except for nodes with many playouts) is mostly
* to save time scanning the source tree. It can take over 20s to traverse
* completely a large source tree (20 GB) even without copying because
* the traversal is not friendly at all with the memory cache. */
int threshold = (node->u.playouts - LARGE_TREE_PLAYOUTS) * DEEP_PLAYOUTS_THRESHOLD / LARGE_TREE_PLAYOUTS;
if (threshold < 0) threshold = 0;
if (threshold > DEEP_PLAYOUTS_THRESHOLD) threshold = DEEP_PLAYOUTS_THRESHOLD;
temp_node = tree_prune(temp_tree, tree, node, threshold, max_depth);
assert(temp_node);
/* Now copy back to original tree. */
tree->nodes_size = 0;
tree->max_depth = 0;
struct tree_node *new_node = tree_prune(tree, temp_tree, temp_node, 0, temp_tree->max_depth);
if (DEBUGL(1)) {
double now = time_now();
static double prev_time;
if (!prev_time) prev_time = start_time;
fprintf(stderr,
"tree pruned in %0.6g s, prev %0.3g s ago, dest depth %d wanted %d,"
" size %lu->%lu/%lu, playouts %d\n",
now - start_time, start_time - prev_time, temp_tree->max_depth, max_depth,
orig_size, temp_tree->nodes_size, tree->max_pruned_size, new_node->u.playouts);
prev_time = start_time;
}
if (temp_tree->nodes_size >= temp_tree->max_tree_size) {
fprintf(stderr, "temp tree overflow, max_tree_size %lu, pruning_threshold %lu\n",
tree->max_tree_size, tree->pruning_threshold);
/* This is not a serious problem, we will simply recompute the discarded nodes
* at the next move if necessary. This is better than frequently wasting memory. */
} else {
assert(tree->nodes_size == temp_tree->nodes_size);
assert(tree->max_depth == temp_tree->max_depth);
}
tree_done(temp_tree);
return new_node;
}
/* Get a node of given coordinate from within parent, possibly creating it
* if necessary - in a very raw form (no .d, priors, ...). */
/* FIXME: Adjust for board symmetry. */
struct tree_node *
tree_get_node(struct tree *t, struct tree_node *parent, coord_t c, bool create)
{
if (!parent->children || node_coord(parent->children) >= c) {
/* Special case: Insertion at the beginning. */
if (parent->children && node_coord(parent->children) == c)
return parent->children;
if (!create)
return NULL;
struct tree_node *nn = tree_init_node(t, c, parent->depth + 1, false);
nn->parent = parent; nn->sibling = parent->children;
parent->children = nn;
return nn;
}
/* No candidate at the beginning, look through all the children. */
struct tree_node *ni;
for (ni = parent->children; ni->sibling; ni = ni->sibling)
if (node_coord(ni->sibling) >= c)
break;
if (ni->sibling && node_coord(ni->sibling) == c)
return ni->sibling;
assert(node_coord(ni) < c);
if (!create)
return NULL;
struct tree_node *nn = tree_init_node(t, c, parent->depth + 1, false);
nn->parent = parent; nn->sibling = ni->sibling; ni->sibling = nn;
return nn;
}
/* Get local tree node corresponding to given node, given local node child
* iterator @lni (which points either at the corresponding node, or at the
* nearest local tree node after @ni). */
struct tree_node *
tree_lnode_for_node(struct tree *tree, struct tree_node *ni, struct tree_node *lni, int tenuki_d)
{
/* Now set up lnode, which is the actual local node
* corresponding to ni - either lni if it is an
* exact match and ni is not tenuki, <pass> local
* node if ni is tenuki, or NULL if there is no
* corresponding node available. */
if (is_pass(node_coord(ni))) {
/* Also, for sanity reasons we never use local
* tree for passes. (Maybe we could, but it's
* too hard to think about.) */
return NULL;
}
if (node_coord(lni) == node_coord(ni)) {
/* We don't consider tenuki a sequence play
* that we have in local tree even though
* ni->d is too high; this can happen if this
* occured in different board topology. */
return lni;
}
if (ni->d >= tenuki_d) {
/* Tenuki, pick a pass lsibling if available. */
assert(lni->parent && lni->parent->children);
if (is_pass(node_coord(lni->parent->children))) {
return lni->parent->children;
} else {
return NULL;
}
}
/* No corresponding local node, lnode stays NULL. */
return NULL;
}
/* Tree symmetry: When possible, we will localize the tree to a single part
* of the board in tree_expand_node() and possibly flip along symmetry axes
* to another part of the board in tree_promote_at(). We follow b->symmetry
* guidelines here. */
/* This function must be thread safe, given that board b is only modified by the calling thread. */
void
tree_expand_node(struct tree *t, struct tree_node *node, struct board *b, enum stone color, struct uct *u, int parity)
{
/* Get a Common Fate Graph distance map from parent node. */
int distances[board_size2(b)];
if (!is_pass(b->last_move.coord) && !is_resign(b->last_move.coord)) {
cfg_distances(b, node_coord(node), distances, TREE_NODE_D_MAX);
} else {
// Pass or resign - everything is too far.
foreach_point(b) { distances[c] = TREE_NODE_D_MAX + 1; } foreach_point_end;
}
/* Get a map of prior values to initialize the new nodes with. */
struct prior_map map = {
.b = b,
.to_play = color,
.parity = tree_parity(t, parity),
.distances = distances,
};
// Include pass in the prior map.
struct move_stats map_prior[board_size2(b) + 1]; map.prior = &map_prior[1];
bool map_consider[board_size2(b) + 1]; map.consider = &map_consider[1];
memset(map_prior, 0, sizeof(map_prior));
memset(map_consider, 0, sizeof(map_consider));
map.consider[pass] = true;
int child_count = 1; // for pass
foreach_free_point(b) {
assert(board_at(b, c) == S_NONE);
if (!board_is_valid_play_no_suicide(b, color, c))
continue;
map.consider[c] = true;
child_count++;
} foreach_free_point_end;
uct_prior(u, node, &map);
/* Now, create the nodes (all at once if fast_alloc) */
struct tree_node *ni = t->nodes ? tree_alloc_node(t, child_count, true) : tree_alloc_node(t, 1, false);
/* In fast_alloc mode we might temporarily run out of nodes but this should be rare. */
if (!ni) {
node->is_expanded = false;
return;
}
tree_setup_node(t, ni, pass, node->depth + 1);
struct tree_node *first_child = ni;
ni->parent = node;
ni->prior = map.prior[pass]; ni->d = TREE_NODE_D_MAX + 1;
/* The loop considers only the symmetry playground. */
if (UDEBUGL(6)) {
fprintf(stderr, "expanding %s within [%d,%d],[%d,%d] %d-%d\n",
coord2sstr(node_coord(node), b),
b->symmetry.x1, b->symmetry.y1,
b->symmetry.x2, b->symmetry.y2,
b->symmetry.type, b->symmetry.d);
}
int child = 1;
for (int j = b->symmetry.y1; j <= b->symmetry.y2; j++) {
for (int i = b->symmetry.x1; i <= b->symmetry.x2; i++) {
if (b->symmetry.d) {
int x = b->symmetry.type == SYM_DIAG_DOWN ? board_size(b) - 1 - i : i;
if (x > j) {
if (UDEBUGL(7))
fprintf(stderr, "drop %d,%d\n", i, j);
continue;
}
}
coord_t c = coord_xy(t->board, i, j);
if (!map.consider[c]) // Filter out invalid moves
continue;
assert(c != node_coord(node)); // I have spotted "C3 C3" in some sequence...
struct tree_node *nj = t->nodes ? first_child + child++ : tree_alloc_node(t, 1, false);
tree_setup_node(t, nj, c, node->depth + 1);
nj->parent = node; ni->sibling = nj; ni = nj;
ni->prior = map.prior[c];
ni->d = distances[c];
}
}
node->children = first_child; // must be done at the end to avoid race
}
static coord_t
flip_coord(struct board *b, coord_t c,
bool flip_horiz, bool flip_vert, int flip_diag)
{
int x = coord_x(c, b), y = coord_y(c, b);
if (flip_diag) {
int z = x; x = y; y = z;
}
if (flip_horiz) {
x = board_size(b) - 1 - x;
}
if (flip_vert) {
y = board_size(b) - 1 - y;
}
return coord_xy(b, x, y);
}
static void
tree_fix_node_symmetry(struct board *b, struct tree_node *node,
bool flip_horiz, bool flip_vert, int flip_diag)
{
if (!is_pass(node_coord(node)))
node->coord = flip_coord(b, node_coord(node), flip_horiz, flip_vert, flip_diag);
for (struct tree_node *ni = node->children; ni; ni = ni->sibling)
tree_fix_node_symmetry(b, ni, flip_horiz, flip_vert, flip_diag);
}
static void
tree_fix_symmetry(struct tree *tree, struct board *b, coord_t c)
{
if (is_pass(c))
return;
struct board_symmetry *s = &tree->root_symmetry;
int cx = coord_x(c, b), cy = coord_y(c, b);
/* playground X->h->v->d normalization
* :::.. .d...
* .::.. v....
* ..:.. .....
* ..... h...X
* ..... ..... */
bool flip_horiz = cx < s->x1 || cx > s->x2;
bool flip_vert = cy < s->y1 || cy > s->y2;
bool flip_diag = 0;
if (s->d) {
bool dir = (s->type == SYM_DIAG_DOWN);
int x = dir ^ flip_horiz ^ flip_vert ? board_size(b) - 1 - cx : cx;
if (flip_vert ? x < cy : x > cy) {
flip_diag = 1;
}
}
if (DEBUGL(4)) {
fprintf(stderr, "%s [%d,%d -> %d,%d;%d,%d] will flip %d %d %d -> %s, sym %d (%d) -> %d (%d)\n",
coord2sstr(c, b),
cx, cy, s->x1, s->y1, s->x2, s->y2,
flip_horiz, flip_vert, flip_diag,
coord2sstr(flip_coord(b, c, flip_horiz, flip_vert, flip_diag), b),
s->type, s->d, b->symmetry.type, b->symmetry.d);
}
if (flip_horiz || flip_vert || flip_diag)
tree_fix_node_symmetry(b, tree->root, flip_horiz, flip_vert, flip_diag);
}
static void
tree_unlink_node(struct tree_node *node)
{
struct tree_node *ni = node->parent;
if (ni->children == node) {
ni->children = node->sibling;
} else {
ni = ni->children;
while (ni->sibling != node)
ni = ni->sibling;
ni->sibling = node->sibling;
}
node->sibling = NULL;
node->parent = NULL;
}
/* Reduce weight of statistics on promotion. Remove nodes that
* get reduced to zero playouts; returns next node to consider
* in the children list (@node may get deleted). */
static struct tree_node *
tree_age_node(struct tree *tree, struct tree_node *node)
{
node->u.playouts /= tree->ltree_aging;
if (node->parent && !node->u.playouts) {
struct tree_node *sibling = node->sibling;
/* Delete node, no playouts. */
tree_unlink_node(node);
tree_done_node(tree, node);
return sibling;
}
struct tree_node *ni = node->children;
while (ni) ni = tree_age_node(tree, ni);
return node->sibling;
}
/* Promotes the given node as the root of the tree. In the fast_alloc
* mode, the node may be moved and some of its subtree may be pruned. */
void
tree_promote_node(struct tree *tree, struct tree_node **node)
{
assert((*node)->parent == tree->root);
tree_unlink_node(*node);
if (!tree->nodes) {
/* Freeing the rest of the tree can take several seconds on large
* trees, so we must do it asynchronously: */
tree_done_node_detached(tree, tree->root);
} else {
/* Garbage collect if we run out of memory, or it is cheap to do so now: */
if (tree->nodes_size >= tree->pruning_threshold
|| (tree->nodes_size >= tree->max_tree_size / 10 && (*node)->u.playouts < SMALL_TREE_PLAYOUTS))
*node = tree_garbage_collect(tree, *node);
}
tree->root = *node;
tree->root_color = stone_other(tree->root_color);
board_symmetry_update(tree->board, &tree->root_symmetry, node_coord(*node));
tree->avg_score.playouts = 0;
/* If the tree deepest node was under node, or if we called tree_garbage_collect,
* tree->max_depth is correct. Otherwise we could traverse the tree
* to recompute max_depth but it's not worth it: it's just for debugging
* and soon the tree will grow and max_depth will become correct again. */
if (tree->ltree_aging != 1.0f) { // XXX: != should work here even with the floating_t
tree_age_node(tree, tree->ltree_black);
tree_age_node(tree, tree->ltree_white);
}
}
bool
tree_promote_at(struct tree *tree, struct board *b, coord_t c)
{
tree_fix_symmetry(tree, b, c);
for (struct tree_node *ni = tree->root->children; ni; ni = ni->sibling) {
if (node_coord(ni) == c) {
tree_promote_node(tree, &ni);
return true;
}
}
return false;
}