pachi_py/pachi/uct/uct.c (852 lines of code) (raw):

#include <assert.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #define DEBUG #include "debug.h" #include "board.h" #include "gtp.h" #include "chat.h" #include "move.h" #include "mq.h" #include "dcnn.h" #include "joseki/base.h" #include "playout.h" #include "playout/moggy.h" #include "playout/light.h" #include "tactics/util.h" #include "timeinfo.h" #include "uct/dynkomi.h" #include "uct/internal.h" #include "uct/plugins.h" #include "uct/prior.h" #include "uct/search.h" #include "uct/slave.h" #include "uct/tree.h" #include "uct/uct.h" #include "uct/walk.h" struct uct_policy *policy_ucb1_init(struct uct *u, char *arg); struct uct_policy *policy_ucb1amaf_init(struct uct *u, char *arg, struct board *board); static void uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color); /* Maximal simulation length. */ #define MC_GAMELEN MAX_GAMELEN static void setup_state(struct uct *u, struct board *b, enum stone color) { u->t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0, u->max_pruned_size, u->pruning_threshold, u->local_tree_aging, u->stats_hbits); if (u->initial_extra_komi) u->t->extra_komi = u->initial_extra_komi; if (u->force_seed) fast_srandom(u->force_seed); if (UDEBUGL(3)) fprintf(stderr, "Fresh board with random seed %lu\n", fast_getseed()); if (!u->no_tbook && b->moves == 0) { if (color == S_BLACK) { tree_load(u->t, b); } else if (DEBUGL(0)) { fprintf(stderr, "Warning: First move appears to be white\n"); } } } static void reset_state(struct uct *u) { assert(u->t); tree_done(u->t); u->t = NULL; } static void setup_dynkomi(struct uct *u, struct board *b, enum stone to_play) { if (u->t->use_extra_komi && !u->pondering && u->dynkomi->permove) u->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, u->t); else if (!u->t->use_extra_komi) u->t->extra_komi = 0; } void uct_prepare_move(struct uct *u, struct board *b, enum stone color) { if (u->t) { /* Verify that we have sane state. */ assert(b->es == u); assert(u->t && b->moves); if (color != stone_other(u->t->root_color)) { fprintf(stderr, "Fatal: Non-alternating play detected %d %d\n", color, u->t->root_color); exit(1); } uct_htable_reset(u->t); } else { /* We need fresh state. */ b->es = u; setup_state(u, b, color); } u->ownermap.playouts = 0; memset(u->ownermap.map, 0, board_size2(b) * sizeof(u->ownermap.map[0])); u->played_own = u->played_all = 0; } static void dead_group_list(struct uct *u, struct board *b, struct move_queue *mq) { enum gj_state gs_array[board_size2(b)]; struct group_judgement gj = { .thres = GJ_THRES, .gs = gs_array }; board_ownermap_judge_groups(b, &u->ownermap, &gj); groups_of_status(b, &gj, GS_DEAD, mq); } bool uct_pass_is_safe(struct uct *u, struct board *b, enum stone color, bool pass_all_alive) { /* Make sure enough playouts are simulated to get a reasonable dead group list. */ while (u->ownermap.playouts < GJ_MINGAMES) uct_playout(u, b, color, u->t); struct move_queue mq = { .moves = 0 }; dead_group_list(u, b, &mq); if (pass_all_alive) { for (unsigned int i = 0; i < mq.moves; i++) { if (board_at(b, mq.move[i]) == stone_other(color)) { return false; // We need to remove opponent dead groups first. } } mq.moves = 0; // our dead stones are alive when pass_all_alive is true } if (u->allow_losing_pass) { foreach_point(b) { if (board_at(b, c) == S_OFFBOARD) continue; if (board_ownermap_judge_point(&u->ownermap, c, GJ_THRES) == PJ_UNKNOWN) { if (UDEBUGL(3)) fprintf(stderr, "uct_pass_is_safe fails at %s[%d]\n", coord2sstr(c, b), c); return false; // Unclear point, clarify first. } } foreach_point_end; return true; } return pass_is_safe(b, color, &mq); } static char * uct_printhook_ownermap(struct board *board, coord_t c, char *s, char *end) { struct uct *u = board->es; if (!u) { strcat(s, ". "); return s + 2; } const char chr[] = ":XO,"; // dame, black, white, unclear const char chm[] = ":xo,"; char ch = chr[board_ownermap_judge_point(&u->ownermap, c, GJ_THRES)]; if (ch == ',') { // less precise estimate then? ch = chm[board_ownermap_judge_point(&u->ownermap, c, 0.67)]; } s += snprintf(s, end - s, "%c ", ch); return s; } static float uct_owner_map(struct engine *e, struct board *b, coord_t c) { struct uct *u = b->es; return board_ownermap_estimate_point(&u->ownermap, c); } static char * uct_notify_play(struct engine *e, struct board *b, struct move *m, char *enginearg) { struct uct *u = e->data; if (!u->t) { /* No state, create one - this is probably game beginning * and we need to load the opening tbook right now. */ uct_prepare_move(u, b, m->color); assert(u->t); } /* Stop pondering, required by tree_promote_at() */ uct_pondering_stop(u); if (UDEBUGL(2) && u->slave) tree_dump(u->t, u->dumpthres); if (is_resign(m->coord)) { /* Reset state. */ reset_state(u); return NULL; } /* Promote node of the appropriate move to the tree root. */ assert(u->t->root); if (u->t->untrustworthy_tree | !tree_promote_at(u->t, b, m->coord)) { if (UDEBUGL(3)) { if (u->t->untrustworthy_tree) fprintf(stderr, "Not promoting move node in untrustworthy tree.\n"); else fprintf(stderr, "Warning: Cannot promote move node! Several play commands in row?\n"); } /* Preserve dynamic komi information, though, that is important. */ u->initial_extra_komi = u->t->extra_komi; reset_state(u); return NULL; } /* If we are a slave in a distributed engine, start pondering once * we know which move we actually played. See uct_genmove() about * the check for pass. */ if (u->pondering_opt && u->slave && m->color == u->my_color && !is_pass(m->coord)) uct_pondering_start(u, b, u->t, stone_other(m->color)); return NULL; } static char * uct_undo(struct engine *e, struct board *b) { struct uct *u = e->data; if (!u->t) return NULL; uct_pondering_stop(u); u->initial_extra_komi = u->t->extra_komi; reset_state(u); return NULL; } static char * uct_result(struct engine *e, struct board *b) { struct uct *u = e->data; static char reply[1024]; if (!u->t) return NULL; enum stone color = u->t->root_color; struct tree_node *n = u->t->root; snprintf(reply, 1024, "%s %s %d %.2f %.1f", stone2str(color), coord2sstr(node_coord(n), b), n->u.playouts, tree_node_get_value(u->t, -1, n->u.value), u->t->use_extra_komi ? u->t->extra_komi : 0); return reply; } static char * uct_chat(struct engine *e, struct board *b, bool opponent, char *from, char *cmd) { struct uct *u = e->data; if (!u->t) return generic_chat(b, opponent, from, cmd, S_NONE, pass, 0, 1, u->threads, 0.0, 0.0); struct tree_node *n = u->t->root; double winrate = tree_node_get_value(u->t, -1, n->u.value); double extra_komi = u->t->use_extra_komi && fabs(u->t->extra_komi) >= 0.5 ? u->t->extra_komi : 0; return generic_chat(b, opponent, from, cmd, u->t->root_color, node_coord(n), n->u.playouts, 1, u->threads, winrate, extra_komi); } static void uct_dead_group_list(struct engine *e, struct board *b, struct move_queue *mq) { struct uct *u = e->data; /* This means the game is probably over, no use pondering on. */ uct_pondering_stop(u); if (u->pass_all_alive) return; // no dead groups bool mock_state = false; if (!u->t) { /* No state, but we cannot just back out - we might * have passed earlier, only assuming some stones are * dead, and then re-connected, only to lose counting * when all stones are assumed alive. */ uct_prepare_move(u, b, S_BLACK); assert(u->t); mock_state = true; } /* Make sure the ownermap is well-seeded. */ while (u->ownermap.playouts < GJ_MINGAMES) uct_playout(u, b, S_BLACK, u->t); /* Show the ownermap: */ if (DEBUGL(2)) board_print_custom(b, stderr, uct_printhook_ownermap); dead_group_list(u, b, mq); if (mock_state) { /* Clean up the mock state in case we will receive * a genmove; we could get a non-alternating-move * error from uct_prepare_move() in that case otherwise. */ reset_state(u); } } static void playout_policy_done(struct playout_policy *p) { if (p->done) p->done(p); if (p->data) free(p->data); free(p); } static void uct_stop(struct engine *e) { /* This is called on game over notification. However, an undo * and game resume can follow, so don't panic yet and just * relax and stop thinking so that we don't waste CPU. */ struct uct *u = e->data; uct_pondering_stop(u); } static void uct_done(struct engine *e) { /* This is called on engine reset, especially when clear_board * is received and new game should begin. */ free(e->comment); struct uct *u = e->data; uct_pondering_stop(u); if (u->t) reset_state(u); if (u->dynkomi) u->dynkomi->done(u->dynkomi); free(u->ownermap.map); if (u->policy) u->policy->done(u->policy); if (u->random_policy) u->random_policy->done(u->random_policy); playout_policy_done(u->playout); uct_prior_done(u->prior); joseki_done(u->jdict); pluginset_done(u->plugins); } /* Run time-limited MCTS search on foreground. */ static int uct_search(struct uct *u, struct board *b, struct time_info *ti, enum stone color, struct tree *t, bool print_progress) { struct uct_search_state s; uct_search_start(u, b, color, t, ti, &s); if (UDEBUGL(2) && s.base_playouts > 0) fprintf(stderr, "<pre-simulated %d games>\n", s.base_playouts); /* The search tree is ctx->t. This is currently == . It is important * to reference ctx->t directly since the * thread manager will swap the tree pointer asynchronously. */ /* Now, just periodically poll the search tree. */ /* Note that in case of TD_GAMES, threads will not wait for * the uct_search_check_stop() signalization. */ while (1) { time_sleep(TREE_BUSYWAIT_INTERVAL); /* TREE_BUSYWAIT_INTERVAL should never be less than desired time, or the * time control is broken. But if it happens to be less, we still search * at least 100ms otherwise the move is completely random. */ int i = uct_search_games(&s); /* Print notifications etc. */ uct_search_progress(u, b, color, t, ti, &s, i); /* Check if we should stop the search. */ if (uct_search_check_stop(u, b, color, t, ti, &s, i)) break; } struct uct_thread_ctx *ctx = uct_search_stop(); if (UDEBUGL(2)) tree_dump(t, u->dumpthres); if (UDEBUGL(2)) fprintf(stderr, "(avg score %f/%d; dynkomi's %f/%d value %f/%d)\n", t->avg_score.value, t->avg_score.playouts, u->dynkomi->score.value, u->dynkomi->score.playouts, u->dynkomi->value.value, u->dynkomi->value.playouts); if (print_progress) uct_progress_status(u, t, color, ctx->games, NULL); if (u->debug_after.playouts > 0) { /* Now, start an additional run of playouts, single threaded. */ struct time_info debug_ti = { .period = TT_MOVE, .dim = TD_GAMES, }; debug_ti.len.games = t->root->u.playouts + u->debug_after.playouts; board_print_custom(b, stderr, uct_printhook_ownermap); fprintf(stderr, "--8<-- UCT debug post-run begin (%d:%d) --8<--\n", u->debug_after.level, u->debug_after.playouts); int debug_level_save = debug_level; int u_debug_level_save = u->debug_level; int p_debug_level_save = u->playout->debug_level; debug_level = u->debug_after.level; u->debug_level = u->debug_after.level; u->playout->debug_level = u->debug_after.level; uct_halt = false; uct_playouts(u, b, color, t, &debug_ti); tree_dump(t, u->dumpthres); uct_halt = true; debug_level = debug_level_save; u->debug_level = u_debug_level_save; u->playout->debug_level = p_debug_level_save; fprintf(stderr, "--8<-- UCT debug post-run finished --8<--\n"); } u->played_own += ctx->games; return ctx->games; } /* Start pondering background with @color to play. */ static void uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color) { if (UDEBUGL(1)) fprintf(stderr, "Starting to ponder with color %s\n", stone2str(stone_other(color))); u->pondering = true; /* We need a local board copy to ponder upon. */ struct board *b = malloc2(sizeof(*b)); board_copy(b, b0); /* *b0 did not have the genmove'd move played yet. */ struct move m = { node_coord(t->root), t->root_color }; int res = board_play(b, &m); assert(res >= 0); setup_dynkomi(u, b, stone_other(m.color)); /* Start MCTS manager thread "headless". */ static struct uct_search_state s; uct_search_start(u, b, color, t, NULL, &s); } /* uct_search_stop() frontend for the pondering (non-genmove) mode, and * to stop the background search for a slave in the distributed engine. */ void uct_pondering_stop(struct uct *u) { if (!thread_manager_running) return; /* Stop the thread manager. */ struct uct_thread_ctx *ctx = uct_search_stop(); if (UDEBUGL(1)) { if (u->pondering) fprintf(stderr, "(pondering) "); uct_progress_status(u, ctx->t, ctx->color, ctx->games, NULL); } if (u->pondering) { free(ctx->b); u->pondering = false; } } void uct_genmove_setup(struct uct *u, struct board *b, enum stone color) { if (b->superko_violation) { fprintf(stderr, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n"); fprintf(stderr, "Maybe you play with situational instead of positional superko?\n"); fprintf(stderr, "I'm going to ignore the violation, but note that I may miss\n"); fprintf(stderr, "some moves valid under this ruleset because of this.\n"); b->superko_violation = false; } uct_prepare_move(u, b, color); assert(u->t); u->my_color = color; /* How to decide whether to use dynkomi in this game? Since we use * pondering, it's not simple "who-to-play" matter. Decide based on * the last genmove issued. */ u->t->use_extra_komi = !!(u->dynkomi_mask & color); setup_dynkomi(u, b, color); if (b->rules == RULES_JAPANESE) u->territory_scoring = true; /* Make pessimistic assumption about komi for Japanese rules to * avoid losing by 0.5 when winning by 0.5 with Chinese rules. * The rules usually give the same winner if the integer part of komi * is odd so we adjust the komi only if it is even (for a board of * odd size). We are not trying to get an exact evaluation for rare * cases of seki. For details see http://home.snafu.de/jasiek/parity.html */ if (u->territory_scoring && (((int)floor(b->komi) + board_size(b)) & 1)) { b->komi += (color == S_BLACK ? 1.0 : -1.0); if (UDEBUGL(0)) fprintf(stderr, "Setting komi to %.1f assuming Japanese rules\n", b->komi); } } static void uct_live_gfx_hook(struct engine *e) { struct uct *u = e->data; /* Hack: Override reportfreq to get decent update rates in GoGui */ u->reportfreq = 1000; } /* Kindof like uct_genmove() but just find the best candidates */ static void uct_best_moves(struct engine *e, struct board *b, enum stone color) { struct time_info ti = { .period = TT_NULL }; double start_time = time_now(); struct uct *u = e->data; uct_pondering_stop(u); if (u->t) reset_state(u); uct_genmove_setup(u, b, color); /* Start the Monte Carlo Tree Search! */ int base_playouts = u->t->root->u.playouts; int played_games = uct_search(u, b, &ti, color, u->t, false); coord_t best_coord; uct_search_result(u, b, color, u->pass_all_alive, played_games, base_playouts, &best_coord); if (UDEBUGL(2)) { double time = time_now() - start_time + 0.000001; /* avoid divide by zero */ fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n", time, (int)(played_games/time), (int)(played_games/time/u->threads)); } uct_progress_status(u, u->t, color, played_games, &best_coord); reset_state(u); } static coord_t * uct_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive) { double start_time = time_now(); struct uct *u = e->data; u->pass_all_alive |= pass_all_alive; uct_pondering_stop(u); if (using_dcnn(b)) { // dcnn hack: reset state to make dcnn priors kick in. // FIXME this makes pondering useless when using dcnn ... if (u->t) { u->initial_extra_komi = u->t->extra_komi; reset_state(u); } } uct_genmove_setup(u, b, color); /* Start the Monte Carlo Tree Search! */ int base_playouts = u->t->root->u.playouts; int played_games = uct_search(u, b, ti, color, u->t, false); coord_t best_coord; struct tree_node *best; best = uct_search_result(u, b, color, u->pass_all_alive, played_games, base_playouts, &best_coord); if (UDEBUGL(2)) { double time = time_now() - start_time + 0.000001; /* avoid divide by zero */ fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n", time, (int)(played_games/time), (int)(played_games/time/u->threads)); } uct_progress_status(u, u->t, color, played_games, &best_coord); if (!best) { /* Pass or resign. */ if (is_pass(best_coord)) u->initial_extra_komi = u->t->extra_komi; reset_state(u); return coord_copy(best_coord); } if (!u->t->untrustworthy_tree) { tree_promote_node(u->t, &best); } else { /* Throw away an untrustworthy tree. */ /* Preserve dynamic komi information, though, that is important. */ u->initial_extra_komi = u->t->extra_komi; reset_state(u); } /* After a pass, pondering is harmful for two reasons: * (i) We might keep pondering even when the game is over. * Of course this is the case for opponent resign as well. * (ii) More importantly, the ownermap will get skewed since * the UCT will start cutting off any playouts. */ if (u->pondering_opt && u->t && !is_pass(node_coord(best))) { uct_pondering_start(u, b, u->t, stone_other(color)); } return coord_copy(best_coord); } bool uct_gentbook(struct engine *e, struct board *b, struct time_info *ti, enum stone color) { struct uct *u = e->data; if (!u->t) uct_prepare_move(u, b, color); assert(u->t); if (ti->dim == TD_GAMES) { /* Don't count in games that already went into the tbook. */ ti->len.games += u->t->root->u.playouts; } uct_search(u, b, ti, color, u->t, true); assert(ti->dim == TD_GAMES); tree_save(u->t, b, ti->len.games / 100); return true; } void uct_dumptbook(struct engine *e, struct board *b, enum stone color) { struct uct *u = e->data; struct tree *t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0, u->max_pruned_size, u->pruning_threshold, u->local_tree_aging, 0); tree_load(t, b); tree_dump(t, 0); tree_done(t); } floating_t uct_evaluate_one(struct engine *e, struct board *b, struct time_info *ti, coord_t c, enum stone color) { struct uct *u = e->data; struct board b2; board_copy(&b2, b); struct move m = { c, color }; int res = board_play(&b2, &m); if (res < 0) return NAN; color = stone_other(color); if (u->t) reset_state(u); uct_prepare_move(u, &b2, color); assert(u->t); floating_t bestval; uct_search(u, &b2, ti, color, u->t, true); struct tree_node *best = u->policy->choose(u->policy, u->t->root, &b2, color, resign); if (!best) { bestval = NAN; // the opponent has no reply! } else { bestval = tree_node_get_value(u->t, 1, best->u.value); } reset_state(u); // clean our junk return isnan(bestval) ? NAN : 1.0f - bestval; } void uct_evaluate(struct engine *e, struct board *b, struct time_info *ti, floating_t *vals, enum stone color) { for (int i = 0; i < b->flen; i++) { if (is_pass(b->f[i])) vals[i] = NAN; else vals[i] = uct_evaluate_one(e, b, ti, b->f[i], color); } } struct uct * uct_state_init(char *arg, struct board *b) { struct uct *u = calloc2(1, sizeof(struct uct)); bool pat_setup = false; u->debug_level = debug_level; u->reportfreq = 10000; u->gamelen = MC_GAMELEN; u->resign_threshold = 0.2; u->sure_win_threshold = 0.95; u->mercymin = 0; u->significant_threshold = 50; u->expand_p = 8; u->dumpthres = 0.01; u->playout_amaf = true; u->amaf_prior = false; u->max_tree_size = 1408ULL * 1048576; u->fast_alloc = true; u->pruning_threshold = 0; u->threads = 1; u->thread_model = TM_TREEVL; u->virtual_loss = 1; u->pondering_opt = true; u->fuseki_end = 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play) u->yose_start = 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then u->bestr_ratio = 0.02; // 2.5 is clearly too much, but seems to compensate well for overly stern time allocations. // TODO: Further tuning and experiments with better time allocation schemes. u->best2_ratio = 2.5; // Higher values of max_maintime_ratio sometimes cause severe time trouble in tournaments // It might be necessary to reduce it to 1.5 on large board, but more tuning is needed. u->max_maintime_ratio = 2.0; u->val_scale = 0; u->val_points = 40; u->dynkomi_interval = 1000; u->dynkomi_mask = S_BLACK | S_WHITE; u->tenuki_d = 4; u->local_tree_aging = 80; u->local_tree_depth_decay = 1.5; u->local_tree_eval = LTE_ROOT; u->local_tree_neival = true; u->max_slaves = -1; u->slave_index = -1; u->stats_delay = 0.01; // 10 ms u->shared_levels = 1; u->plugins = pluginset_init(b); u->jdict = joseki_load(b->size); if (arg) { char *optspec, *next = arg; while (*next) { optspec = next; next += strcspn(next, ","); if (*next) { *next++ = 0; } else { *next = 0; } char *optname = optspec; char *optval = strchr(optspec, '='); if (optval) *optval++ = 0; /** Basic options */ if (!strcasecmp(optname, "debug")) { if (optval) u->debug_level = atoi(optval); else u->debug_level++; } else if (!strcasecmp(optname, "reporting") && optval) { /* The format of output for detailed progress * information (such as current best move and * its value, etc.). */ if (!strcasecmp(optval, "text")) { /* Plaintext traditional output. */ u->reporting = UR_TEXT; } else if (!strcasecmp(optval, "json")) { /* JSON output. Implies debug=0. */ u->reporting = UR_JSON; u->debug_level = 0; } else if (!strcasecmp(optval, "jsonbig")) { /* JSON output, but much more detailed. * Implies debug=0. */ u->reporting = UR_JSON_BIG; u->debug_level = 0; } else { fprintf(stderr, "UCT: Invalid reporting format %s\n", optval); exit(1); } } else if (!strcasecmp(optname, "reportfreq") && optval) { /* The progress information line will be shown * every <reportfreq> simulations. */ u->reportfreq = atoi(optval); } else if (!strcasecmp(optname, "dumpthres") && optval) { /* When dumping the UCT tree on output, include * nodes with at least this many playouts. * (A fraction of the total # of playouts at the * tree root.) */ /* Use 0 to list all nodes with at least one * simulation, and -1 to list _all_ nodes. */ u->dumpthres = atof(optval); } else if (!strcasecmp(optname, "resign_threshold") && optval) { /* Resign when this ratio of games is lost * after GJ_MINGAMES sample is taken. */ u->resign_threshold = atof(optval); } else if (!strcasecmp(optname, "sure_win_threshold") && optval) { /* Stop reading when this ratio of games is won * after PLAYOUT_EARLY_BREAK_MIN sample is * taken. (Prevents stupid time losses, * friendly to human opponents.) */ u->sure_win_threshold = atof(optval); } else if (!strcasecmp(optname, "force_seed") && optval) { /* Set RNG seed at the tree setup. */ u->force_seed = atoi(optval); } else if (!strcasecmp(optname, "no_tbook")) { /* Disable UCT opening tbook. */ u->no_tbook = true; } else if (!strcasecmp(optname, "pass_all_alive")) { /* Whether to consider passing only after all * dead groups were removed from the board; * this is like all genmoves are in fact * kgs-genmove_cleanup. */ u->pass_all_alive = !optval || atoi(optval); } else if (!strcasecmp(optname, "allow_losing_pass")) { /* Whether to consider passing in a clear * but losing situation, to be scored as a loss * for us. */ u->allow_losing_pass = !optval || atoi(optval); } else if (!strcasecmp(optname, "territory_scoring")) { /* Use territory scoring (default is area scoring). * An explicit kgs-rules command overrides this. */ u->territory_scoring = !optval || atoi(optval); } else if (!strcasecmp(optname, "stones_only")) { /* Do not count eyes. Nice to teach go to kids. * http://strasbourg.jeudego.org/regle_strasbourgeoise.htm */ b->rules = RULES_STONES_ONLY; u->pass_all_alive = true; } else if (!strcasecmp(optname, "debug_after")) { /* debug_after=9:1000 will make Pachi think under * the normal conditions, but at the point when * a move is to be chosen, the tree is dumped and * another 1000 simulations are run single-threaded * with debug level 9, allowing inspection of Pachi's * behavior after it has thought a lot. */ if (optval) { u->debug_after.level = atoi(optval); char *playouts = strchr(optval, ':'); if (playouts) u->debug_after.playouts = atoi(playouts+1); else u->debug_after.playouts = 1000; } else { u->debug_after.level = 9; u->debug_after.playouts = 1000; } } else if (!strcasecmp(optname, "banner") && optval) { /* Additional banner string. This must come as the * last engine parameter. You can use '+' instead * of ' ' if you are wrestling with kgsGtp. */ if (*next) *--next = ','; u->banner = strdup(optval); for (char *b = u->banner; *b; b++) { if (*b == '+') *b = ' '; } break; } else if (!strcasecmp(optname, "plugin") && optval) { /* Load an external plugin; filename goes before the colon, * extra arguments after the colon. */ char *pluginarg = strchr(optval, ':'); if (pluginarg) *pluginarg++ = 0; plugin_load(u->plugins, optval, pluginarg); /** UCT behavior and policies */ } else if ((!strcasecmp(optname, "policy") /* Node selection policy. ucb1amaf is the * default policy implementing RAVE, while * ucb1 is the simple exploration/exploitation * policy. Policies can take further extra * options. */ || !strcasecmp(optname, "random_policy")) && optval) { /* A policy to be used randomly with small * chance instead of the default policy. */ char *policyarg = strchr(optval, ':'); struct uct_policy **p = !strcasecmp(optname, "policy") ? &u->policy : &u->random_policy; if (policyarg) *policyarg++ = 0; if (!strcasecmp(optval, "ucb1")) { *p = policy_ucb1_init(u, policyarg); } else if (!strcasecmp(optval, "ucb1amaf")) { *p = policy_ucb1amaf_init(u, policyarg, b); } else { fprintf(stderr, "UCT: Invalid tree policy %s\n", optval); exit(1); } } else if (!strcasecmp(optname, "playout") && optval) { /* Random simulation (playout) policy. * moggy is the default policy with large * amount of domain-specific knowledge and * heuristics. light is a simple uniformly * random move selection policy. */ char *playoutarg = strchr(optval, ':'); if (playoutarg) *playoutarg++ = 0; if (!strcasecmp(optval, "moggy")) { u->playout = playout_moggy_init(playoutarg, b, u->jdict); } else if (!strcasecmp(optval, "light")) { u->playout = playout_light_init(playoutarg, b); } else { fprintf(stderr, "UCT: Invalid playout policy %s\n", optval); exit(1); } } else if (!strcasecmp(optname, "prior") && optval) { /* Node priors policy. When expanding a node, * it will seed node values heuristically * (most importantly, based on playout policy * opinion, but also with regard to other * things). See uct/prior.c for details. * Use prior=eqex=0 to disable priors. */ u->prior = uct_prior_init(optval, b, u); } else if (!strcasecmp(optname, "mercy") && optval) { /* Minimal difference of black/white captures * to stop playout - "Mercy Rule". Speeds up * hopeless playouts at the expense of some * accuracy. */ u->mercymin = atoi(optval); } else if (!strcasecmp(optname, "gamelen") && optval) { /* Maximum length of single simulation * in moves. */ u->gamelen = atoi(optval); } else if (!strcasecmp(optname, "expand_p") && optval) { /* Expand UCT nodes after it has been * visited this many times. */ u->expand_p = atoi(optval); } else if (!strcasecmp(optname, "random_policy_chance") && optval) { /* If specified (N), with probability 1/N, random_policy policy * descend is used instead of main policy descend; useful * if specified policy (e.g. UCB1AMAF) can make unduly biased * choices sometimes, you can fall back to e.g. * random_policy=UCB1. */ u->random_policy_chance = atoi(optval); /** General AMAF behavior */ /* (Only relevant if the policy supports AMAF. * More variables can be tuned as policy * parameters.) */ } else if (!strcasecmp(optname, "playout_amaf")) { /* Whether to include random playout moves in * AMAF as well. (Otherwise, only tree moves * are included in AMAF. Of course makes sense * only in connection with an AMAF policy.) */ /* with-without: 55.5% (+-4.1) */ if (optval && *optval == '0') u->playout_amaf = false; else u->playout_amaf = true; } else if (!strcasecmp(optname, "playout_amaf_cutoff") && optval) { /* Keep only first N% of playout stage AMAF * information. */ u->playout_amaf_cutoff = atoi(optval); } else if (!strcasecmp(optname, "amaf_prior") && optval) { /* In node policy, consider prior values * part of the real result term or part * of the AMAF term? */ u->amaf_prior = atoi(optval); /** Performance and memory management */ } else if (!strcasecmp(optname, "threads") && optval) { /* By default, Pachi will run with only single * tree search thread! */ u->threads = atoi(optval); } else if (!strcasecmp(optname, "thread_model") && optval) { if (!strcasecmp(optval, "tree")) { /* Tree parallelization - all threads * grind on the same tree. */ u->thread_model = TM_TREE; u->virtual_loss = 0; } else if (!strcasecmp(optval, "treevl")) { /* Tree parallelization, but also * with virtual losses - this discou- * rages most threads choosing the * same tree branches to read. */ u->thread_model = TM_TREEVL; } else { fprintf(stderr, "UCT: Invalid thread model %s\n", optval); exit(1); } } else if (!strcasecmp(optname, "virtual_loss") && optval) { /* Number of virtual losses added before evaluating a node. */ u->virtual_loss = atoi(optval); } else if (!strcasecmp(optname, "pondering")) { /* Keep searching even during opponent's turn. */ u->pondering_opt = !optval || atoi(optval); } else if (!strcasecmp(optname, "max_tree_size") && optval) { /* Maximum amount of memory [MiB] consumed by the move tree. * For fast_alloc it includes the temp tree used for pruning. * Default is 3072 (3 GiB). */ u->max_tree_size = atol(optval) * 1048576; } else if (!strcasecmp(optname, "fast_alloc")) { u->fast_alloc = !optval || atoi(optval); } else if (!strcasecmp(optname, "pruning_threshold") && optval) { /* Force pruning at beginning of a move if the tree consumes * more than this [MiB]. Default is 10% of max_tree_size. * Increase to reduce pruning time overhead if memory is plentiful. * This option is meaningful only for fast_alloc. */ u->pruning_threshold = atol(optval) * 1048576; /** Time control */ } else if (!strcasecmp(optname, "best2_ratio") && optval) { /* If set, prolong simulating while * first_best/second_best playouts ratio * is less than best2_ratio. */ u->best2_ratio = atof(optval); } else if (!strcasecmp(optname, "bestr_ratio") && optval) { /* If set, prolong simulating while * best,best_best_child values delta * is more than bestr_ratio. */ u->bestr_ratio = atof(optval); } else if (!strcasecmp(optname, "max_maintime_ratio") && optval) { /* If set and while not in byoyomi, prolong simulating no more than * max_maintime_ratio times the normal desired thinking time. */ u->max_maintime_ratio = atof(optval); } else if (!strcasecmp(optname, "fuseki_end") && optval) { /* At the very beginning it's not worth thinking * too long because the playout evaluations are * very noisy. So gradually increase the thinking * time up to maximum when fuseki_end percent * of the board has been played. * This only applies if we are not in byoyomi. */ u->fuseki_end = atoi(optval); } else if (!strcasecmp(optname, "yose_start") && optval) { /* When yose_start percent of the board has been * played, or if we are in byoyomi, stop spending * more time and spread the remaining time * uniformly. * Between fuseki_end and yose_start, we spend * a constant proportion of the remaining time * on each move. (yose_start should actually * be much earlier than when real yose start, * but "yose" is a good short name to convey * the idea.) */ u->yose_start = atoi(optval); /** Dynamic komi */ } else if (!strcasecmp(optname, "dynkomi") && optval) { /* Dynamic komi approach; there are multiple * ways to adjust komi dynamically throughout * play. We currently support two: */ char *dynkomiarg = strchr(optval, ':'); if (dynkomiarg) *dynkomiarg++ = 0; if (!strcasecmp(optval, "none")) { u->dynkomi = uct_dynkomi_init_none(u, dynkomiarg, b); } else if (!strcasecmp(optval, "linear")) { /* You should set dynkomi_mask=1 or a very low * handicap_value for white. */ u->dynkomi = uct_dynkomi_init_linear(u, dynkomiarg, b); } else if (!strcasecmp(optval, "adaptive")) { /* There are many more knobs to * crank - see uct/dynkomi.c. */ u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomiarg, b); } else { fprintf(stderr, "UCT: Invalid dynkomi mode %s\n", optval); exit(1); } } else if (!strcasecmp(optname, "dynkomi_mask") && optval) { /* Bitmask of colors the player must be * for dynkomi be applied; the default dynkomi_mask=3 allows * dynkomi even in games where Pachi is white. */ u->dynkomi_mask = atoi(optval); } else if (!strcasecmp(optname, "dynkomi_interval") && optval) { /* If non-zero, re-adjust dynamic komi * throughout a single genmove reading, * roughly every N simulations. */ /* XXX: Does not work with tree * parallelization. */ u->dynkomi_interval = atoi(optval); } else if (!strcasecmp(optname, "extra_komi") && optval) { /* Initial dynamic komi settings. This * is useful for the adaptive dynkomi * policy as the value to start with * (this is NOT kept fixed) in case * there is not enough time in the search * to adjust the value properly (e.g. the * game was interrupted). */ u->initial_extra_komi = atof(optval); /** Node value result scaling */ } else if (!strcasecmp(optname, "val_scale") && optval) { /* How much of the game result value should be * influenced by win size. Zero means it isn't. */ u->val_scale = atof(optval); } else if (!strcasecmp(optname, "val_points") && optval) { /* Maximum size of win to be scaled into game * result value. Zero means boardsize^2. */ u->val_points = atoi(optval) * 2; // result values are doubled } else if (!strcasecmp(optname, "val_extra")) { /* If false, the score coefficient will be simply * added to the value, instead of scaling the result * coefficient because of it. */ u->val_extra = !optval || atoi(optval); } else if (!strcasecmp(optname, "val_byavg")) { /* If true, the score included in the value will * be relative to average score in the current * search episode inst. of jigo. */ u->val_byavg = !optval || atoi(optval); } else if (!strcasecmp(optname, "val_bytemp")) { /* If true, the value scaling coefficient * is different based on value extremity * (dist. from 0.5), linear between * val_bytemp_min, val_scale. */ u->val_bytemp = !optval || atoi(optval); } else if (!strcasecmp(optname, "val_bytemp_min") && optval) { /* Minimum val_scale in case of val_bytemp. */ u->val_bytemp_min = atof(optval); /** Local trees */ /* (Purely experimental. Does not work - yet!) */ } else if (!strcasecmp(optname, "local_tree")) { /* Whether to bias exploration by local tree values. */ u->local_tree = !optval || atoi(optval); } else if (!strcasecmp(optname, "tenuki_d") && optval) { /* Tenuki distance at which to break the local tree. */ u->tenuki_d = atoi(optval); if (u->tenuki_d > TREE_NODE_D_MAX + 1) { fprintf(stderr, "uct: tenuki_d must not be larger than TREE_NODE_D_MAX+1 %d\n", TREE_NODE_D_MAX + 1); exit(1); } } else if (!strcasecmp(optname, "local_tree_aging") && optval) { /* How much to reduce local tree values between moves. */ u->local_tree_aging = atof(optval); } else if (!strcasecmp(optname, "local_tree_depth_decay") && optval) { /* With value x>0, during the descent the node * contributes 1/x^depth playouts in * the local tree. I.e., with x>1, nodes more * distant from local situation contribute more * than nodes near the root. */ u->local_tree_depth_decay = atof(optval); } else if (!strcasecmp(optname, "local_tree_allseq")) { /* If disabled, only complete sequences are stored * in the local tree. If this is on, also * subsequences starting at each move are stored. */ u->local_tree_allseq = !optval || atoi(optval); } else if (!strcasecmp(optname, "local_tree_neival")) { /* If disabled, local node value is not * computed just based on terminal status * of the coordinate, but also its neighbors. */ u->local_tree_neival = !optval || atoi(optval); } else if (!strcasecmp(optname, "local_tree_eval")) { /* How is the value inserted in the local tree * determined. */ if (!strcasecmp(optval, "root")) /* All moves within a tree branch are * considered wrt. their merit * reaching tachtical goal of making * the first move in the branch * survive. */ u->local_tree_eval = LTE_ROOT; else if (!strcasecmp(optval, "each")) /* Each move is considered wrt. * its own survival. */ u->local_tree_eval = LTE_EACH; else if (!strcasecmp(optval, "total")) /* The tactical goal is the survival * of all the moves of my color and * non-survival of all the opponent * moves. Local values (and their * inverses) are averaged. */ u->local_tree_eval = LTE_TOTAL; else { fprintf(stderr, "uct: unknown local_tree_eval %s\n", optval); exit(1); } } else if (!strcasecmp(optname, "local_tree_rootchoose")) { /* If disabled, only moves within the local * tree branch are considered; the values * of the branch roots (i.e. root children) * are ignored. This may make sense together * with eval!=each, we consider only moves * that influence the goal, not the "rating" * of the goal itself. (The real solution * will be probably using criticality to pick * local tree branches.) */ u->local_tree_rootchoose = !optval || atoi(optval); /** Other heuristics */ } else if (!strcasecmp(optname, "patterns")) { /* Load pattern database. Various modules * (priors, policies etc.) may make use * of this database. They will request * it automatically in that case, but you * can use this option to tweak the pattern * parameters. */ patterns_init(&u->pat, optval, false, true); u->want_pat = pat_setup = true; } else if (!strcasecmp(optname, "significant_threshold") && optval) { /* Some heuristics (XXX: none in mainline) rely * on the knowledge of the last "significant" * node in the descent. Such a node is * considered reasonably trustworthy to carry * some meaningful information in the values * of the node and its children. */ u->significant_threshold = atoi(optval); /** Distributed engine slaves setup */ } else if (!strcasecmp(optname, "slave")) { /* Act as slave for the distributed engine. */ u->slave = !optval || atoi(optval); } else if (!strcasecmp(optname, "slave_index") && optval) { /* Optional index if per-slave behavior is desired. * Must be given as index/max */ u->slave_index = atoi(optval); char *p = strchr(optval, '/'); if (p) u->max_slaves = atoi(++p); } else if (!strcasecmp(optname, "shared_nodes") && optval) { /* Share at most shared_nodes between master and slave at each genmoves. * Must use the same value in master and slaves. */ u->shared_nodes = atoi(optval); } else if (!strcasecmp(optname, "shared_levels") && optval) { /* Share only nodes of level <= shared_levels. */ u->shared_levels = atoi(optval); } else if (!strcasecmp(optname, "stats_hbits") && optval) { /* Set hash table size to 2^stats_hbits for the shared stats. */ u->stats_hbits = atoi(optval); } else if (!strcasecmp(optname, "stats_delay") && optval) { /* How long to wait in slave for initial stats to build up before * replying to the genmoves command (in ms) */ u->stats_delay = 0.001 * atof(optval); /** Presets */ } else if (!strcasecmp(optname, "maximize_score")) { /* A combination of settings that will make * Pachi try to maximize his points (instead * of playing slack yose) or minimize his loss * (and proceed to counting even when losing). */ /* Please note that this preset might be * somewhat weaker than normal Pachi, and the * score maximization is approximate; point size * of win/loss still should not be used to judge * strength of Pachi or the opponent. */ /* See README for some further notes. */ if (!optval || atoi(optval)) { /* Allow scoring a lost game. */ u->allow_losing_pass = true; /* Make Pachi keep his calm when losing * and/or maintain winning marging. */ /* Do not play games that are losing * by too much. */ /* XXX: komi_ratchet_age=40000 is necessary * with losing_komi_ratchet, but 40000 * is somewhat arbitrary value. */ char dynkomi_args[] = "losing_komi_ratchet:komi_ratchet_age=60000:no_komi_at_game_end=0:max_losing_komi=30"; u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomi_args, b); /* XXX: Values arbitrary so far. */ /* XXX: Also, is bytemp sensible when * combined with dynamic komi?! */ u->val_scale = 0.01; u->val_bytemp = true; u->val_bytemp_min = 0.001; u->val_byavg = true; } } else { fprintf(stderr, "uct: Invalid engine argument %s or missing value\n", optname); exit(1); } } } if (!u->policy) u->policy = policy_ucb1amaf_init(u, NULL, b); if (!!u->random_policy_chance ^ !!u->random_policy) { fprintf(stderr, "uct: Only one of random_policy and random_policy_chance is set\n"); exit(1); } if (!u->local_tree) { /* No ltree aging. */ u->local_tree_aging = 1.0f; } if (u->fast_alloc) { if (u->pruning_threshold < u->max_tree_size / 10) u->pruning_threshold = u->max_tree_size / 10; if (u->pruning_threshold > u->max_tree_size / 2) u->pruning_threshold = u->max_tree_size / 2; /* Limit pruning temp space to 20% of memory. Beyond this we discard * the nodes and recompute them at the next move if necessary. */ u->max_pruned_size = u->max_tree_size / 5; u->max_tree_size -= u->max_pruned_size; } else { /* Reserve 5% memory in case the background free() are slower * than the concurrent allocations. */ u->max_tree_size -= u->max_tree_size / 20; } if (!u->prior) u->prior = uct_prior_init(NULL, b, u); if (!u->playout) u->playout = playout_moggy_init(NULL, b, u->jdict); if (!u->playout->debug_level) u->playout->debug_level = u->debug_level; if (u->want_pat && !pat_setup) patterns_init(&u->pat, NULL, false, true); dcnn_init(); u->ownermap.map = malloc2(board_size2(b) * sizeof(u->ownermap.map[0])); if (u->slave) { if (!u->stats_hbits) u->stats_hbits = DEFAULT_STATS_HBITS; if (!u->shared_nodes) u->shared_nodes = DEFAULT_SHARED_NODES; assert(u->shared_levels * board_bits2(b) <= 8 * (int)sizeof(path_t)); } if (!u->dynkomi) u->dynkomi = board_small(b) ? uct_dynkomi_init_none(u, NULL, b) : uct_dynkomi_init_linear(u, NULL, b); /* Some things remain uninitialized for now - the opening tbook * is not loaded and the tree not set up. */ /* This will be initialized in setup_state() at the first move * received/requested. This is because right now we are not aware * about any komi or handicap setup and such. */ return u; } struct engine * engine_uct_init(char *arg, struct board *b) { struct uct *u = uct_state_init(arg, b); struct engine *e = calloc2(1, sizeof(struct engine)); e->name = "UCT"; e->printhook = uct_printhook_ownermap; e->notify_play = uct_notify_play; e->chat = uct_chat; e->undo = uct_undo; e->result = uct_result; e->genmove = uct_genmove; e->genmoves = uct_genmoves; e->evaluate = uct_evaluate; e->dead_group_list = uct_dead_group_list; e->stop = uct_stop; e->done = uct_done; e->owner_map = uct_owner_map; e->best_moves = uct_best_moves; e->live_gfx_hook = uct_live_gfx_hook; e->data = u; if (u->slave) e->notify = uct_notify; const char banner[] = "If you believe you have won but I am still playing, " "please help me understand by capturing all dead stones. " "Anyone can send me 'winrate' in private chat to get my assessment of the position."; if (!u->banner) u->banner = ""; e->comment = malloc2(sizeof(banner) + strlen(u->banner) + 1); sprintf(e->comment, "%s %s", banner, u->banner); return e; }