pachi_py/pachi/uct/uct.c (852 lines of code) (raw):
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#define DEBUG
#include "debug.h"
#include "board.h"
#include "gtp.h"
#include "chat.h"
#include "move.h"
#include "mq.h"
#include "dcnn.h"
#include "joseki/base.h"
#include "playout.h"
#include "playout/moggy.h"
#include "playout/light.h"
#include "tactics/util.h"
#include "timeinfo.h"
#include "uct/dynkomi.h"
#include "uct/internal.h"
#include "uct/plugins.h"
#include "uct/prior.h"
#include "uct/search.h"
#include "uct/slave.h"
#include "uct/tree.h"
#include "uct/uct.h"
#include "uct/walk.h"
struct uct_policy *policy_ucb1_init(struct uct *u, char *arg);
struct uct_policy *policy_ucb1amaf_init(struct uct *u, char *arg, struct board *board);
static void uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color);
/* Maximal simulation length. */
#define MC_GAMELEN MAX_GAMELEN
static void
setup_state(struct uct *u, struct board *b, enum stone color)
{
u->t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0,
u->max_pruned_size, u->pruning_threshold, u->local_tree_aging, u->stats_hbits);
if (u->initial_extra_komi)
u->t->extra_komi = u->initial_extra_komi;
if (u->force_seed)
fast_srandom(u->force_seed);
if (UDEBUGL(3))
fprintf(stderr, "Fresh board with random seed %lu\n", fast_getseed());
if (!u->no_tbook && b->moves == 0) {
if (color == S_BLACK) {
tree_load(u->t, b);
} else if (DEBUGL(0)) {
fprintf(stderr, "Warning: First move appears to be white\n");
}
}
}
static void
reset_state(struct uct *u)
{
assert(u->t);
tree_done(u->t); u->t = NULL;
}
static void
setup_dynkomi(struct uct *u, struct board *b, enum stone to_play)
{
if (u->t->use_extra_komi && !u->pondering && u->dynkomi->permove)
u->t->extra_komi = u->dynkomi->permove(u->dynkomi, b, u->t);
else if (!u->t->use_extra_komi)
u->t->extra_komi = 0;
}
void
uct_prepare_move(struct uct *u, struct board *b, enum stone color)
{
if (u->t) {
/* Verify that we have sane state. */
assert(b->es == u);
assert(u->t && b->moves);
if (color != stone_other(u->t->root_color)) {
fprintf(stderr, "Fatal: Non-alternating play detected %d %d\n",
color, u->t->root_color);
exit(1);
}
uct_htable_reset(u->t);
} else {
/* We need fresh state. */
b->es = u;
setup_state(u, b, color);
}
u->ownermap.playouts = 0;
memset(u->ownermap.map, 0, board_size2(b) * sizeof(u->ownermap.map[0]));
u->played_own = u->played_all = 0;
}
static void
dead_group_list(struct uct *u, struct board *b, struct move_queue *mq)
{
enum gj_state gs_array[board_size2(b)];
struct group_judgement gj = { .thres = GJ_THRES, .gs = gs_array };
board_ownermap_judge_groups(b, &u->ownermap, &gj);
groups_of_status(b, &gj, GS_DEAD, mq);
}
bool
uct_pass_is_safe(struct uct *u, struct board *b, enum stone color, bool pass_all_alive)
{
/* Make sure enough playouts are simulated to get a reasonable dead group list. */
while (u->ownermap.playouts < GJ_MINGAMES)
uct_playout(u, b, color, u->t);
struct move_queue mq = { .moves = 0 };
dead_group_list(u, b, &mq);
if (pass_all_alive) {
for (unsigned int i = 0; i < mq.moves; i++) {
if (board_at(b, mq.move[i]) == stone_other(color)) {
return false; // We need to remove opponent dead groups first.
}
}
mq.moves = 0; // our dead stones are alive when pass_all_alive is true
}
if (u->allow_losing_pass) {
foreach_point(b) {
if (board_at(b, c) == S_OFFBOARD)
continue;
if (board_ownermap_judge_point(&u->ownermap, c, GJ_THRES) == PJ_UNKNOWN) {
if (UDEBUGL(3))
fprintf(stderr, "uct_pass_is_safe fails at %s[%d]\n", coord2sstr(c, b), c);
return false; // Unclear point, clarify first.
}
} foreach_point_end;
return true;
}
return pass_is_safe(b, color, &mq);
}
static char *
uct_printhook_ownermap(struct board *board, coord_t c, char *s, char *end)
{
struct uct *u = board->es;
if (!u) {
strcat(s, ". ");
return s + 2;
}
const char chr[] = ":XO,"; // dame, black, white, unclear
const char chm[] = ":xo,";
char ch = chr[board_ownermap_judge_point(&u->ownermap, c, GJ_THRES)];
if (ch == ',') { // less precise estimate then?
ch = chm[board_ownermap_judge_point(&u->ownermap, c, 0.67)];
}
s += snprintf(s, end - s, "%c ", ch);
return s;
}
static float
uct_owner_map(struct engine *e, struct board *b, coord_t c)
{
struct uct *u = b->es;
return board_ownermap_estimate_point(&u->ownermap, c);
}
static char *
uct_notify_play(struct engine *e, struct board *b, struct move *m, char *enginearg)
{
struct uct *u = e->data;
if (!u->t) {
/* No state, create one - this is probably game beginning
* and we need to load the opening tbook right now. */
uct_prepare_move(u, b, m->color);
assert(u->t);
}
/* Stop pondering, required by tree_promote_at() */
uct_pondering_stop(u);
if (UDEBUGL(2) && u->slave)
tree_dump(u->t, u->dumpthres);
if (is_resign(m->coord)) {
/* Reset state. */
reset_state(u);
return NULL;
}
/* Promote node of the appropriate move to the tree root. */
assert(u->t->root);
if (u->t->untrustworthy_tree | !tree_promote_at(u->t, b, m->coord)) {
if (UDEBUGL(3)) {
if (u->t->untrustworthy_tree)
fprintf(stderr, "Not promoting move node in untrustworthy tree.\n");
else
fprintf(stderr, "Warning: Cannot promote move node! Several play commands in row?\n");
}
/* Preserve dynamic komi information, though, that is important. */
u->initial_extra_komi = u->t->extra_komi;
reset_state(u);
return NULL;
}
/* If we are a slave in a distributed engine, start pondering once
* we know which move we actually played. See uct_genmove() about
* the check for pass. */
if (u->pondering_opt && u->slave && m->color == u->my_color && !is_pass(m->coord))
uct_pondering_start(u, b, u->t, stone_other(m->color));
return NULL;
}
static char *
uct_undo(struct engine *e, struct board *b)
{
struct uct *u = e->data;
if (!u->t) return NULL;
uct_pondering_stop(u);
u->initial_extra_komi = u->t->extra_komi;
reset_state(u);
return NULL;
}
static char *
uct_result(struct engine *e, struct board *b)
{
struct uct *u = e->data;
static char reply[1024];
if (!u->t)
return NULL;
enum stone color = u->t->root_color;
struct tree_node *n = u->t->root;
snprintf(reply, 1024, "%s %s %d %.2f %.1f",
stone2str(color), coord2sstr(node_coord(n), b),
n->u.playouts, tree_node_get_value(u->t, -1, n->u.value),
u->t->use_extra_komi ? u->t->extra_komi : 0);
return reply;
}
static char *
uct_chat(struct engine *e, struct board *b, bool opponent, char *from, char *cmd)
{
struct uct *u = e->data;
if (!u->t)
return generic_chat(b, opponent, from, cmd, S_NONE, pass, 0, 1, u->threads, 0.0, 0.0);
struct tree_node *n = u->t->root;
double winrate = tree_node_get_value(u->t, -1, n->u.value);
double extra_komi = u->t->use_extra_komi && fabs(u->t->extra_komi) >= 0.5 ? u->t->extra_komi : 0;
return generic_chat(b, opponent, from, cmd, u->t->root_color, node_coord(n), n->u.playouts, 1,
u->threads, winrate, extra_komi);
}
static void
uct_dead_group_list(struct engine *e, struct board *b, struct move_queue *mq)
{
struct uct *u = e->data;
/* This means the game is probably over, no use pondering on. */
uct_pondering_stop(u);
if (u->pass_all_alive)
return; // no dead groups
bool mock_state = false;
if (!u->t) {
/* No state, but we cannot just back out - we might
* have passed earlier, only assuming some stones are
* dead, and then re-connected, only to lose counting
* when all stones are assumed alive. */
uct_prepare_move(u, b, S_BLACK); assert(u->t);
mock_state = true;
}
/* Make sure the ownermap is well-seeded. */
while (u->ownermap.playouts < GJ_MINGAMES)
uct_playout(u, b, S_BLACK, u->t);
/* Show the ownermap: */
if (DEBUGL(2))
board_print_custom(b, stderr, uct_printhook_ownermap);
dead_group_list(u, b, mq);
if (mock_state) {
/* Clean up the mock state in case we will receive
* a genmove; we could get a non-alternating-move
* error from uct_prepare_move() in that case otherwise. */
reset_state(u);
}
}
static void
playout_policy_done(struct playout_policy *p)
{
if (p->done) p->done(p);
if (p->data) free(p->data);
free(p);
}
static void
uct_stop(struct engine *e)
{
/* This is called on game over notification. However, an undo
* and game resume can follow, so don't panic yet and just
* relax and stop thinking so that we don't waste CPU. */
struct uct *u = e->data;
uct_pondering_stop(u);
}
static void
uct_done(struct engine *e)
{
/* This is called on engine reset, especially when clear_board
* is received and new game should begin. */
free(e->comment);
struct uct *u = e->data;
uct_pondering_stop(u);
if (u->t) reset_state(u);
if (u->dynkomi) u->dynkomi->done(u->dynkomi);
free(u->ownermap.map);
if (u->policy) u->policy->done(u->policy);
if (u->random_policy) u->random_policy->done(u->random_policy);
playout_policy_done(u->playout);
uct_prior_done(u->prior);
joseki_done(u->jdict);
pluginset_done(u->plugins);
}
/* Run time-limited MCTS search on foreground. */
static int
uct_search(struct uct *u, struct board *b, struct time_info *ti, enum stone color, struct tree *t, bool print_progress)
{
struct uct_search_state s;
uct_search_start(u, b, color, t, ti, &s);
if (UDEBUGL(2) && s.base_playouts > 0)
fprintf(stderr, "<pre-simulated %d games>\n", s.base_playouts);
/* The search tree is ctx->t. This is currently == . It is important
* to reference ctx->t directly since the
* thread manager will swap the tree pointer asynchronously. */
/* Now, just periodically poll the search tree. */
/* Note that in case of TD_GAMES, threads will not wait for
* the uct_search_check_stop() signalization. */
while (1) {
time_sleep(TREE_BUSYWAIT_INTERVAL);
/* TREE_BUSYWAIT_INTERVAL should never be less than desired time, or the
* time control is broken. But if it happens to be less, we still search
* at least 100ms otherwise the move is completely random. */
int i = uct_search_games(&s);
/* Print notifications etc. */
uct_search_progress(u, b, color, t, ti, &s, i);
/* Check if we should stop the search. */
if (uct_search_check_stop(u, b, color, t, ti, &s, i))
break;
}
struct uct_thread_ctx *ctx = uct_search_stop();
if (UDEBUGL(2)) tree_dump(t, u->dumpthres);
if (UDEBUGL(2))
fprintf(stderr, "(avg score %f/%d; dynkomi's %f/%d value %f/%d)\n",
t->avg_score.value, t->avg_score.playouts,
u->dynkomi->score.value, u->dynkomi->score.playouts,
u->dynkomi->value.value, u->dynkomi->value.playouts);
if (print_progress)
uct_progress_status(u, t, color, ctx->games, NULL);
if (u->debug_after.playouts > 0) {
/* Now, start an additional run of playouts, single threaded. */
struct time_info debug_ti = {
.period = TT_MOVE,
.dim = TD_GAMES,
};
debug_ti.len.games = t->root->u.playouts + u->debug_after.playouts;
board_print_custom(b, stderr, uct_printhook_ownermap);
fprintf(stderr, "--8<-- UCT debug post-run begin (%d:%d) --8<--\n", u->debug_after.level, u->debug_after.playouts);
int debug_level_save = debug_level;
int u_debug_level_save = u->debug_level;
int p_debug_level_save = u->playout->debug_level;
debug_level = u->debug_after.level;
u->debug_level = u->debug_after.level;
u->playout->debug_level = u->debug_after.level;
uct_halt = false;
uct_playouts(u, b, color, t, &debug_ti);
tree_dump(t, u->dumpthres);
uct_halt = true;
debug_level = debug_level_save;
u->debug_level = u_debug_level_save;
u->playout->debug_level = p_debug_level_save;
fprintf(stderr, "--8<-- UCT debug post-run finished --8<--\n");
}
u->played_own += ctx->games;
return ctx->games;
}
/* Start pondering background with @color to play. */
static void
uct_pondering_start(struct uct *u, struct board *b0, struct tree *t, enum stone color)
{
if (UDEBUGL(1))
fprintf(stderr, "Starting to ponder with color %s\n", stone2str(stone_other(color)));
u->pondering = true;
/* We need a local board copy to ponder upon. */
struct board *b = malloc2(sizeof(*b)); board_copy(b, b0);
/* *b0 did not have the genmove'd move played yet. */
struct move m = { node_coord(t->root), t->root_color };
int res = board_play(b, &m);
assert(res >= 0);
setup_dynkomi(u, b, stone_other(m.color));
/* Start MCTS manager thread "headless". */
static struct uct_search_state s;
uct_search_start(u, b, color, t, NULL, &s);
}
/* uct_search_stop() frontend for the pondering (non-genmove) mode, and
* to stop the background search for a slave in the distributed engine. */
void
uct_pondering_stop(struct uct *u)
{
if (!thread_manager_running)
return;
/* Stop the thread manager. */
struct uct_thread_ctx *ctx = uct_search_stop();
if (UDEBUGL(1)) {
if (u->pondering) fprintf(stderr, "(pondering) ");
uct_progress_status(u, ctx->t, ctx->color, ctx->games, NULL);
}
if (u->pondering) {
free(ctx->b);
u->pondering = false;
}
}
void
uct_genmove_setup(struct uct *u, struct board *b, enum stone color)
{
if (b->superko_violation) {
fprintf(stderr, "!!! WARNING: SUPERKO VIOLATION OCCURED BEFORE THIS MOVE\n");
fprintf(stderr, "Maybe you play with situational instead of positional superko?\n");
fprintf(stderr, "I'm going to ignore the violation, but note that I may miss\n");
fprintf(stderr, "some moves valid under this ruleset because of this.\n");
b->superko_violation = false;
}
uct_prepare_move(u, b, color);
assert(u->t);
u->my_color = color;
/* How to decide whether to use dynkomi in this game? Since we use
* pondering, it's not simple "who-to-play" matter. Decide based on
* the last genmove issued. */
u->t->use_extra_komi = !!(u->dynkomi_mask & color);
setup_dynkomi(u, b, color);
if (b->rules == RULES_JAPANESE)
u->territory_scoring = true;
/* Make pessimistic assumption about komi for Japanese rules to
* avoid losing by 0.5 when winning by 0.5 with Chinese rules.
* The rules usually give the same winner if the integer part of komi
* is odd so we adjust the komi only if it is even (for a board of
* odd size). We are not trying to get an exact evaluation for rare
* cases of seki. For details see http://home.snafu.de/jasiek/parity.html */
if (u->territory_scoring && (((int)floor(b->komi) + board_size(b)) & 1)) {
b->komi += (color == S_BLACK ? 1.0 : -1.0);
if (UDEBUGL(0))
fprintf(stderr, "Setting komi to %.1f assuming Japanese rules\n",
b->komi);
}
}
static void
uct_live_gfx_hook(struct engine *e)
{
struct uct *u = e->data;
/* Hack: Override reportfreq to get decent update rates in GoGui */
u->reportfreq = 1000;
}
/* Kindof like uct_genmove() but just find the best candidates */
static void
uct_best_moves(struct engine *e, struct board *b, enum stone color)
{
struct time_info ti = { .period = TT_NULL };
double start_time = time_now();
struct uct *u = e->data;
uct_pondering_stop(u);
if (u->t)
reset_state(u);
uct_genmove_setup(u, b, color);
/* Start the Monte Carlo Tree Search! */
int base_playouts = u->t->root->u.playouts;
int played_games = uct_search(u, b, &ti, color, u->t, false);
coord_t best_coord;
uct_search_result(u, b, color, u->pass_all_alive, played_games, base_playouts, &best_coord);
if (UDEBUGL(2)) {
double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
time, (int)(played_games/time), (int)(played_games/time/u->threads));
}
uct_progress_status(u, u->t, color, played_games, &best_coord);
reset_state(u);
}
static coord_t *
uct_genmove(struct engine *e, struct board *b, struct time_info *ti, enum stone color, bool pass_all_alive)
{
double start_time = time_now();
struct uct *u = e->data;
u->pass_all_alive |= pass_all_alive;
uct_pondering_stop(u);
if (using_dcnn(b)) {
// dcnn hack: reset state to make dcnn priors kick in.
// FIXME this makes pondering useless when using dcnn ...
if (u->t) {
u->initial_extra_komi = u->t->extra_komi;
reset_state(u);
}
}
uct_genmove_setup(u, b, color);
/* Start the Monte Carlo Tree Search! */
int base_playouts = u->t->root->u.playouts;
int played_games = uct_search(u, b, ti, color, u->t, false);
coord_t best_coord;
struct tree_node *best;
best = uct_search_result(u, b, color, u->pass_all_alive, played_games, base_playouts, &best_coord);
if (UDEBUGL(2)) {
double time = time_now() - start_time + 0.000001; /* avoid divide by zero */
fprintf(stderr, "genmove in %0.2fs (%d games/s, %d games/s/thread)\n",
time, (int)(played_games/time), (int)(played_games/time/u->threads));
}
uct_progress_status(u, u->t, color, played_games, &best_coord);
if (!best) {
/* Pass or resign. */
if (is_pass(best_coord))
u->initial_extra_komi = u->t->extra_komi;
reset_state(u);
return coord_copy(best_coord);
}
if (!u->t->untrustworthy_tree) {
tree_promote_node(u->t, &best);
} else {
/* Throw away an untrustworthy tree. */
/* Preserve dynamic komi information, though, that is important. */
u->initial_extra_komi = u->t->extra_komi;
reset_state(u);
}
/* After a pass, pondering is harmful for two reasons:
* (i) We might keep pondering even when the game is over.
* Of course this is the case for opponent resign as well.
* (ii) More importantly, the ownermap will get skewed since
* the UCT will start cutting off any playouts. */
if (u->pondering_opt && u->t && !is_pass(node_coord(best))) {
uct_pondering_start(u, b, u->t, stone_other(color));
}
return coord_copy(best_coord);
}
bool
uct_gentbook(struct engine *e, struct board *b, struct time_info *ti, enum stone color)
{
struct uct *u = e->data;
if (!u->t) uct_prepare_move(u, b, color);
assert(u->t);
if (ti->dim == TD_GAMES) {
/* Don't count in games that already went into the tbook. */
ti->len.games += u->t->root->u.playouts;
}
uct_search(u, b, ti, color, u->t, true);
assert(ti->dim == TD_GAMES);
tree_save(u->t, b, ti->len.games / 100);
return true;
}
void
uct_dumptbook(struct engine *e, struct board *b, enum stone color)
{
struct uct *u = e->data;
struct tree *t = tree_init(b, color, u->fast_alloc ? u->max_tree_size : 0,
u->max_pruned_size, u->pruning_threshold, u->local_tree_aging, 0);
tree_load(t, b);
tree_dump(t, 0);
tree_done(t);
}
floating_t
uct_evaluate_one(struct engine *e, struct board *b, struct time_info *ti, coord_t c, enum stone color)
{
struct uct *u = e->data;
struct board b2;
board_copy(&b2, b);
struct move m = { c, color };
int res = board_play(&b2, &m);
if (res < 0)
return NAN;
color = stone_other(color);
if (u->t) reset_state(u);
uct_prepare_move(u, &b2, color);
assert(u->t);
floating_t bestval;
uct_search(u, &b2, ti, color, u->t, true);
struct tree_node *best = u->policy->choose(u->policy, u->t->root, &b2, color, resign);
if (!best) {
bestval = NAN; // the opponent has no reply!
} else {
bestval = tree_node_get_value(u->t, 1, best->u.value);
}
reset_state(u); // clean our junk
return isnan(bestval) ? NAN : 1.0f - bestval;
}
void
uct_evaluate(struct engine *e, struct board *b, struct time_info *ti, floating_t *vals, enum stone color)
{
for (int i = 0; i < b->flen; i++) {
if (is_pass(b->f[i]))
vals[i] = NAN;
else
vals[i] = uct_evaluate_one(e, b, ti, b->f[i], color);
}
}
struct uct *
uct_state_init(char *arg, struct board *b)
{
struct uct *u = calloc2(1, sizeof(struct uct));
bool pat_setup = false;
u->debug_level = debug_level;
u->reportfreq = 10000;
u->gamelen = MC_GAMELEN;
u->resign_threshold = 0.2;
u->sure_win_threshold = 0.95;
u->mercymin = 0;
u->significant_threshold = 50;
u->expand_p = 8;
u->dumpthres = 0.01;
u->playout_amaf = true;
u->amaf_prior = false;
u->max_tree_size = 1408ULL * 1048576;
u->fast_alloc = true;
u->pruning_threshold = 0;
u->threads = 1;
u->thread_model = TM_TREEVL;
u->virtual_loss = 1;
u->pondering_opt = true;
u->fuseki_end = 20; // max time at 361*20% = 72 moves (our 36th move, still 99 to play)
u->yose_start = 40; // (100-40-25)*361/100/2 = 63 moves still to play by us then
u->bestr_ratio = 0.02;
// 2.5 is clearly too much, but seems to compensate well for overly stern time allocations.
// TODO: Further tuning and experiments with better time allocation schemes.
u->best2_ratio = 2.5;
// Higher values of max_maintime_ratio sometimes cause severe time trouble in tournaments
// It might be necessary to reduce it to 1.5 on large board, but more tuning is needed.
u->max_maintime_ratio = 2.0;
u->val_scale = 0; u->val_points = 40;
u->dynkomi_interval = 1000;
u->dynkomi_mask = S_BLACK | S_WHITE;
u->tenuki_d = 4;
u->local_tree_aging = 80;
u->local_tree_depth_decay = 1.5;
u->local_tree_eval = LTE_ROOT;
u->local_tree_neival = true;
u->max_slaves = -1;
u->slave_index = -1;
u->stats_delay = 0.01; // 10 ms
u->shared_levels = 1;
u->plugins = pluginset_init(b);
u->jdict = joseki_load(b->size);
if (arg) {
char *optspec, *next = arg;
while (*next) {
optspec = next;
next += strcspn(next, ",");
if (*next) { *next++ = 0; } else { *next = 0; }
char *optname = optspec;
char *optval = strchr(optspec, '=');
if (optval) *optval++ = 0;
/** Basic options */
if (!strcasecmp(optname, "debug")) {
if (optval)
u->debug_level = atoi(optval);
else
u->debug_level++;
} else if (!strcasecmp(optname, "reporting") && optval) {
/* The format of output for detailed progress
* information (such as current best move and
* its value, etc.). */
if (!strcasecmp(optval, "text")) {
/* Plaintext traditional output. */
u->reporting = UR_TEXT;
} else if (!strcasecmp(optval, "json")) {
/* JSON output. Implies debug=0. */
u->reporting = UR_JSON;
u->debug_level = 0;
} else if (!strcasecmp(optval, "jsonbig")) {
/* JSON output, but much more detailed.
* Implies debug=0. */
u->reporting = UR_JSON_BIG;
u->debug_level = 0;
} else {
fprintf(stderr, "UCT: Invalid reporting format %s\n", optval);
exit(1);
}
} else if (!strcasecmp(optname, "reportfreq") && optval) {
/* The progress information line will be shown
* every <reportfreq> simulations. */
u->reportfreq = atoi(optval);
} else if (!strcasecmp(optname, "dumpthres") && optval) {
/* When dumping the UCT tree on output, include
* nodes with at least this many playouts.
* (A fraction of the total # of playouts at the
* tree root.) */
/* Use 0 to list all nodes with at least one
* simulation, and -1 to list _all_ nodes. */
u->dumpthres = atof(optval);
} else if (!strcasecmp(optname, "resign_threshold") && optval) {
/* Resign when this ratio of games is lost
* after GJ_MINGAMES sample is taken. */
u->resign_threshold = atof(optval);
} else if (!strcasecmp(optname, "sure_win_threshold") && optval) {
/* Stop reading when this ratio of games is won
* after PLAYOUT_EARLY_BREAK_MIN sample is
* taken. (Prevents stupid time losses,
* friendly to human opponents.) */
u->sure_win_threshold = atof(optval);
} else if (!strcasecmp(optname, "force_seed") && optval) {
/* Set RNG seed at the tree setup. */
u->force_seed = atoi(optval);
} else if (!strcasecmp(optname, "no_tbook")) {
/* Disable UCT opening tbook. */
u->no_tbook = true;
} else if (!strcasecmp(optname, "pass_all_alive")) {
/* Whether to consider passing only after all
* dead groups were removed from the board;
* this is like all genmoves are in fact
* kgs-genmove_cleanup. */
u->pass_all_alive = !optval || atoi(optval);
} else if (!strcasecmp(optname, "allow_losing_pass")) {
/* Whether to consider passing in a clear
* but losing situation, to be scored as a loss
* for us. */
u->allow_losing_pass = !optval || atoi(optval);
} else if (!strcasecmp(optname, "territory_scoring")) {
/* Use territory scoring (default is area scoring).
* An explicit kgs-rules command overrides this. */
u->territory_scoring = !optval || atoi(optval);
} else if (!strcasecmp(optname, "stones_only")) {
/* Do not count eyes. Nice to teach go to kids.
* http://strasbourg.jeudego.org/regle_strasbourgeoise.htm */
b->rules = RULES_STONES_ONLY;
u->pass_all_alive = true;
} else if (!strcasecmp(optname, "debug_after")) {
/* debug_after=9:1000 will make Pachi think under
* the normal conditions, but at the point when
* a move is to be chosen, the tree is dumped and
* another 1000 simulations are run single-threaded
* with debug level 9, allowing inspection of Pachi's
* behavior after it has thought a lot. */
if (optval) {
u->debug_after.level = atoi(optval);
char *playouts = strchr(optval, ':');
if (playouts)
u->debug_after.playouts = atoi(playouts+1);
else
u->debug_after.playouts = 1000;
} else {
u->debug_after.level = 9;
u->debug_after.playouts = 1000;
}
} else if (!strcasecmp(optname, "banner") && optval) {
/* Additional banner string. This must come as the
* last engine parameter. You can use '+' instead
* of ' ' if you are wrestling with kgsGtp. */
if (*next) *--next = ',';
u->banner = strdup(optval);
for (char *b = u->banner; *b; b++) {
if (*b == '+') *b = ' ';
}
break;
} else if (!strcasecmp(optname, "plugin") && optval) {
/* Load an external plugin; filename goes before the colon,
* extra arguments after the colon. */
char *pluginarg = strchr(optval, ':');
if (pluginarg)
*pluginarg++ = 0;
plugin_load(u->plugins, optval, pluginarg);
/** UCT behavior and policies */
} else if ((!strcasecmp(optname, "policy")
/* Node selection policy. ucb1amaf is the
* default policy implementing RAVE, while
* ucb1 is the simple exploration/exploitation
* policy. Policies can take further extra
* options. */
|| !strcasecmp(optname, "random_policy")) && optval) {
/* A policy to be used randomly with small
* chance instead of the default policy. */
char *policyarg = strchr(optval, ':');
struct uct_policy **p = !strcasecmp(optname, "policy") ? &u->policy : &u->random_policy;
if (policyarg)
*policyarg++ = 0;
if (!strcasecmp(optval, "ucb1")) {
*p = policy_ucb1_init(u, policyarg);
} else if (!strcasecmp(optval, "ucb1amaf")) {
*p = policy_ucb1amaf_init(u, policyarg, b);
} else {
fprintf(stderr, "UCT: Invalid tree policy %s\n", optval);
exit(1);
}
} else if (!strcasecmp(optname, "playout") && optval) {
/* Random simulation (playout) policy.
* moggy is the default policy with large
* amount of domain-specific knowledge and
* heuristics. light is a simple uniformly
* random move selection policy. */
char *playoutarg = strchr(optval, ':');
if (playoutarg)
*playoutarg++ = 0;
if (!strcasecmp(optval, "moggy")) {
u->playout = playout_moggy_init(playoutarg, b, u->jdict);
} else if (!strcasecmp(optval, "light")) {
u->playout = playout_light_init(playoutarg, b);
} else {
fprintf(stderr, "UCT: Invalid playout policy %s\n", optval);
exit(1);
}
} else if (!strcasecmp(optname, "prior") && optval) {
/* Node priors policy. When expanding a node,
* it will seed node values heuristically
* (most importantly, based on playout policy
* opinion, but also with regard to other
* things). See uct/prior.c for details.
* Use prior=eqex=0 to disable priors. */
u->prior = uct_prior_init(optval, b, u);
} else if (!strcasecmp(optname, "mercy") && optval) {
/* Minimal difference of black/white captures
* to stop playout - "Mercy Rule". Speeds up
* hopeless playouts at the expense of some
* accuracy. */
u->mercymin = atoi(optval);
} else if (!strcasecmp(optname, "gamelen") && optval) {
/* Maximum length of single simulation
* in moves. */
u->gamelen = atoi(optval);
} else if (!strcasecmp(optname, "expand_p") && optval) {
/* Expand UCT nodes after it has been
* visited this many times. */
u->expand_p = atoi(optval);
} else if (!strcasecmp(optname, "random_policy_chance") && optval) {
/* If specified (N), with probability 1/N, random_policy policy
* descend is used instead of main policy descend; useful
* if specified policy (e.g. UCB1AMAF) can make unduly biased
* choices sometimes, you can fall back to e.g.
* random_policy=UCB1. */
u->random_policy_chance = atoi(optval);
/** General AMAF behavior */
/* (Only relevant if the policy supports AMAF.
* More variables can be tuned as policy
* parameters.) */
} else if (!strcasecmp(optname, "playout_amaf")) {
/* Whether to include random playout moves in
* AMAF as well. (Otherwise, only tree moves
* are included in AMAF. Of course makes sense
* only in connection with an AMAF policy.) */
/* with-without: 55.5% (+-4.1) */
if (optval && *optval == '0')
u->playout_amaf = false;
else
u->playout_amaf = true;
} else if (!strcasecmp(optname, "playout_amaf_cutoff") && optval) {
/* Keep only first N% of playout stage AMAF
* information. */
u->playout_amaf_cutoff = atoi(optval);
} else if (!strcasecmp(optname, "amaf_prior") && optval) {
/* In node policy, consider prior values
* part of the real result term or part
* of the AMAF term? */
u->amaf_prior = atoi(optval);
/** Performance and memory management */
} else if (!strcasecmp(optname, "threads") && optval) {
/* By default, Pachi will run with only single
* tree search thread! */
u->threads = atoi(optval);
} else if (!strcasecmp(optname, "thread_model") && optval) {
if (!strcasecmp(optval, "tree")) {
/* Tree parallelization - all threads
* grind on the same tree. */
u->thread_model = TM_TREE;
u->virtual_loss = 0;
} else if (!strcasecmp(optval, "treevl")) {
/* Tree parallelization, but also
* with virtual losses - this discou-
* rages most threads choosing the
* same tree branches to read. */
u->thread_model = TM_TREEVL;
} else {
fprintf(stderr, "UCT: Invalid thread model %s\n", optval);
exit(1);
}
} else if (!strcasecmp(optname, "virtual_loss") && optval) {
/* Number of virtual losses added before evaluating a node. */
u->virtual_loss = atoi(optval);
} else if (!strcasecmp(optname, "pondering")) {
/* Keep searching even during opponent's turn. */
u->pondering_opt = !optval || atoi(optval);
} else if (!strcasecmp(optname, "max_tree_size") && optval) {
/* Maximum amount of memory [MiB] consumed by the move tree.
* For fast_alloc it includes the temp tree used for pruning.
* Default is 3072 (3 GiB). */
u->max_tree_size = atol(optval) * 1048576;
} else if (!strcasecmp(optname, "fast_alloc")) {
u->fast_alloc = !optval || atoi(optval);
} else if (!strcasecmp(optname, "pruning_threshold") && optval) {
/* Force pruning at beginning of a move if the tree consumes
* more than this [MiB]. Default is 10% of max_tree_size.
* Increase to reduce pruning time overhead if memory is plentiful.
* This option is meaningful only for fast_alloc. */
u->pruning_threshold = atol(optval) * 1048576;
/** Time control */
} else if (!strcasecmp(optname, "best2_ratio") && optval) {
/* If set, prolong simulating while
* first_best/second_best playouts ratio
* is less than best2_ratio. */
u->best2_ratio = atof(optval);
} else if (!strcasecmp(optname, "bestr_ratio") && optval) {
/* If set, prolong simulating while
* best,best_best_child values delta
* is more than bestr_ratio. */
u->bestr_ratio = atof(optval);
} else if (!strcasecmp(optname, "max_maintime_ratio") && optval) {
/* If set and while not in byoyomi, prolong simulating no more than
* max_maintime_ratio times the normal desired thinking time. */
u->max_maintime_ratio = atof(optval);
} else if (!strcasecmp(optname, "fuseki_end") && optval) {
/* At the very beginning it's not worth thinking
* too long because the playout evaluations are
* very noisy. So gradually increase the thinking
* time up to maximum when fuseki_end percent
* of the board has been played.
* This only applies if we are not in byoyomi. */
u->fuseki_end = atoi(optval);
} else if (!strcasecmp(optname, "yose_start") && optval) {
/* When yose_start percent of the board has been
* played, or if we are in byoyomi, stop spending
* more time and spread the remaining time
* uniformly.
* Between fuseki_end and yose_start, we spend
* a constant proportion of the remaining time
* on each move. (yose_start should actually
* be much earlier than when real yose start,
* but "yose" is a good short name to convey
* the idea.) */
u->yose_start = atoi(optval);
/** Dynamic komi */
} else if (!strcasecmp(optname, "dynkomi") && optval) {
/* Dynamic komi approach; there are multiple
* ways to adjust komi dynamically throughout
* play. We currently support two: */
char *dynkomiarg = strchr(optval, ':');
if (dynkomiarg)
*dynkomiarg++ = 0;
if (!strcasecmp(optval, "none")) {
u->dynkomi = uct_dynkomi_init_none(u, dynkomiarg, b);
} else if (!strcasecmp(optval, "linear")) {
/* You should set dynkomi_mask=1 or a very low
* handicap_value for white. */
u->dynkomi = uct_dynkomi_init_linear(u, dynkomiarg, b);
} else if (!strcasecmp(optval, "adaptive")) {
/* There are many more knobs to
* crank - see uct/dynkomi.c. */
u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomiarg, b);
} else {
fprintf(stderr, "UCT: Invalid dynkomi mode %s\n", optval);
exit(1);
}
} else if (!strcasecmp(optname, "dynkomi_mask") && optval) {
/* Bitmask of colors the player must be
* for dynkomi be applied; the default dynkomi_mask=3 allows
* dynkomi even in games where Pachi is white. */
u->dynkomi_mask = atoi(optval);
} else if (!strcasecmp(optname, "dynkomi_interval") && optval) {
/* If non-zero, re-adjust dynamic komi
* throughout a single genmove reading,
* roughly every N simulations. */
/* XXX: Does not work with tree
* parallelization. */
u->dynkomi_interval = atoi(optval);
} else if (!strcasecmp(optname, "extra_komi") && optval) {
/* Initial dynamic komi settings. This
* is useful for the adaptive dynkomi
* policy as the value to start with
* (this is NOT kept fixed) in case
* there is not enough time in the search
* to adjust the value properly (e.g. the
* game was interrupted). */
u->initial_extra_komi = atof(optval);
/** Node value result scaling */
} else if (!strcasecmp(optname, "val_scale") && optval) {
/* How much of the game result value should be
* influenced by win size. Zero means it isn't. */
u->val_scale = atof(optval);
} else if (!strcasecmp(optname, "val_points") && optval) {
/* Maximum size of win to be scaled into game
* result value. Zero means boardsize^2. */
u->val_points = atoi(optval) * 2; // result values are doubled
} else if (!strcasecmp(optname, "val_extra")) {
/* If false, the score coefficient will be simply
* added to the value, instead of scaling the result
* coefficient because of it. */
u->val_extra = !optval || atoi(optval);
} else if (!strcasecmp(optname, "val_byavg")) {
/* If true, the score included in the value will
* be relative to average score in the current
* search episode inst. of jigo. */
u->val_byavg = !optval || atoi(optval);
} else if (!strcasecmp(optname, "val_bytemp")) {
/* If true, the value scaling coefficient
* is different based on value extremity
* (dist. from 0.5), linear between
* val_bytemp_min, val_scale. */
u->val_bytemp = !optval || atoi(optval);
} else if (!strcasecmp(optname, "val_bytemp_min") && optval) {
/* Minimum val_scale in case of val_bytemp. */
u->val_bytemp_min = atof(optval);
/** Local trees */
/* (Purely experimental. Does not work - yet!) */
} else if (!strcasecmp(optname, "local_tree")) {
/* Whether to bias exploration by local tree values. */
u->local_tree = !optval || atoi(optval);
} else if (!strcasecmp(optname, "tenuki_d") && optval) {
/* Tenuki distance at which to break the local tree. */
u->tenuki_d = atoi(optval);
if (u->tenuki_d > TREE_NODE_D_MAX + 1) {
fprintf(stderr, "uct: tenuki_d must not be larger than TREE_NODE_D_MAX+1 %d\n", TREE_NODE_D_MAX + 1);
exit(1);
}
} else if (!strcasecmp(optname, "local_tree_aging") && optval) {
/* How much to reduce local tree values between moves. */
u->local_tree_aging = atof(optval);
} else if (!strcasecmp(optname, "local_tree_depth_decay") && optval) {
/* With value x>0, during the descent the node
* contributes 1/x^depth playouts in
* the local tree. I.e., with x>1, nodes more
* distant from local situation contribute more
* than nodes near the root. */
u->local_tree_depth_decay = atof(optval);
} else if (!strcasecmp(optname, "local_tree_allseq")) {
/* If disabled, only complete sequences are stored
* in the local tree. If this is on, also
* subsequences starting at each move are stored. */
u->local_tree_allseq = !optval || atoi(optval);
} else if (!strcasecmp(optname, "local_tree_neival")) {
/* If disabled, local node value is not
* computed just based on terminal status
* of the coordinate, but also its neighbors. */
u->local_tree_neival = !optval || atoi(optval);
} else if (!strcasecmp(optname, "local_tree_eval")) {
/* How is the value inserted in the local tree
* determined. */
if (!strcasecmp(optval, "root"))
/* All moves within a tree branch are
* considered wrt. their merit
* reaching tachtical goal of making
* the first move in the branch
* survive. */
u->local_tree_eval = LTE_ROOT;
else if (!strcasecmp(optval, "each"))
/* Each move is considered wrt.
* its own survival. */
u->local_tree_eval = LTE_EACH;
else if (!strcasecmp(optval, "total"))
/* The tactical goal is the survival
* of all the moves of my color and
* non-survival of all the opponent
* moves. Local values (and their
* inverses) are averaged. */
u->local_tree_eval = LTE_TOTAL;
else {
fprintf(stderr, "uct: unknown local_tree_eval %s\n", optval);
exit(1);
}
} else if (!strcasecmp(optname, "local_tree_rootchoose")) {
/* If disabled, only moves within the local
* tree branch are considered; the values
* of the branch roots (i.e. root children)
* are ignored. This may make sense together
* with eval!=each, we consider only moves
* that influence the goal, not the "rating"
* of the goal itself. (The real solution
* will be probably using criticality to pick
* local tree branches.) */
u->local_tree_rootchoose = !optval || atoi(optval);
/** Other heuristics */
} else if (!strcasecmp(optname, "patterns")) {
/* Load pattern database. Various modules
* (priors, policies etc.) may make use
* of this database. They will request
* it automatically in that case, but you
* can use this option to tweak the pattern
* parameters. */
patterns_init(&u->pat, optval, false, true);
u->want_pat = pat_setup = true;
} else if (!strcasecmp(optname, "significant_threshold") && optval) {
/* Some heuristics (XXX: none in mainline) rely
* on the knowledge of the last "significant"
* node in the descent. Such a node is
* considered reasonably trustworthy to carry
* some meaningful information in the values
* of the node and its children. */
u->significant_threshold = atoi(optval);
/** Distributed engine slaves setup */
} else if (!strcasecmp(optname, "slave")) {
/* Act as slave for the distributed engine. */
u->slave = !optval || atoi(optval);
} else if (!strcasecmp(optname, "slave_index") && optval) {
/* Optional index if per-slave behavior is desired.
* Must be given as index/max */
u->slave_index = atoi(optval);
char *p = strchr(optval, '/');
if (p) u->max_slaves = atoi(++p);
} else if (!strcasecmp(optname, "shared_nodes") && optval) {
/* Share at most shared_nodes between master and slave at each genmoves.
* Must use the same value in master and slaves. */
u->shared_nodes = atoi(optval);
} else if (!strcasecmp(optname, "shared_levels") && optval) {
/* Share only nodes of level <= shared_levels. */
u->shared_levels = atoi(optval);
} else if (!strcasecmp(optname, "stats_hbits") && optval) {
/* Set hash table size to 2^stats_hbits for the shared stats. */
u->stats_hbits = atoi(optval);
} else if (!strcasecmp(optname, "stats_delay") && optval) {
/* How long to wait in slave for initial stats to build up before
* replying to the genmoves command (in ms) */
u->stats_delay = 0.001 * atof(optval);
/** Presets */
} else if (!strcasecmp(optname, "maximize_score")) {
/* A combination of settings that will make
* Pachi try to maximize his points (instead
* of playing slack yose) or minimize his loss
* (and proceed to counting even when losing). */
/* Please note that this preset might be
* somewhat weaker than normal Pachi, and the
* score maximization is approximate; point size
* of win/loss still should not be used to judge
* strength of Pachi or the opponent. */
/* See README for some further notes. */
if (!optval || atoi(optval)) {
/* Allow scoring a lost game. */
u->allow_losing_pass = true;
/* Make Pachi keep his calm when losing
* and/or maintain winning marging. */
/* Do not play games that are losing
* by too much. */
/* XXX: komi_ratchet_age=40000 is necessary
* with losing_komi_ratchet, but 40000
* is somewhat arbitrary value. */
char dynkomi_args[] = "losing_komi_ratchet:komi_ratchet_age=60000:no_komi_at_game_end=0:max_losing_komi=30";
u->dynkomi = uct_dynkomi_init_adaptive(u, dynkomi_args, b);
/* XXX: Values arbitrary so far. */
/* XXX: Also, is bytemp sensible when
* combined with dynamic komi?! */
u->val_scale = 0.01;
u->val_bytemp = true;
u->val_bytemp_min = 0.001;
u->val_byavg = true;
}
} else {
fprintf(stderr, "uct: Invalid engine argument %s or missing value\n", optname);
exit(1);
}
}
}
if (!u->policy)
u->policy = policy_ucb1amaf_init(u, NULL, b);
if (!!u->random_policy_chance ^ !!u->random_policy) {
fprintf(stderr, "uct: Only one of random_policy and random_policy_chance is set\n");
exit(1);
}
if (!u->local_tree) {
/* No ltree aging. */
u->local_tree_aging = 1.0f;
}
if (u->fast_alloc) {
if (u->pruning_threshold < u->max_tree_size / 10)
u->pruning_threshold = u->max_tree_size / 10;
if (u->pruning_threshold > u->max_tree_size / 2)
u->pruning_threshold = u->max_tree_size / 2;
/* Limit pruning temp space to 20% of memory. Beyond this we discard
* the nodes and recompute them at the next move if necessary. */
u->max_pruned_size = u->max_tree_size / 5;
u->max_tree_size -= u->max_pruned_size;
} else {
/* Reserve 5% memory in case the background free() are slower
* than the concurrent allocations. */
u->max_tree_size -= u->max_tree_size / 20;
}
if (!u->prior)
u->prior = uct_prior_init(NULL, b, u);
if (!u->playout)
u->playout = playout_moggy_init(NULL, b, u->jdict);
if (!u->playout->debug_level)
u->playout->debug_level = u->debug_level;
if (u->want_pat && !pat_setup)
patterns_init(&u->pat, NULL, false, true);
dcnn_init();
u->ownermap.map = malloc2(board_size2(b) * sizeof(u->ownermap.map[0]));
if (u->slave) {
if (!u->stats_hbits) u->stats_hbits = DEFAULT_STATS_HBITS;
if (!u->shared_nodes) u->shared_nodes = DEFAULT_SHARED_NODES;
assert(u->shared_levels * board_bits2(b) <= 8 * (int)sizeof(path_t));
}
if (!u->dynkomi)
u->dynkomi = board_small(b) ? uct_dynkomi_init_none(u, NULL, b)
: uct_dynkomi_init_linear(u, NULL, b);
/* Some things remain uninitialized for now - the opening tbook
* is not loaded and the tree not set up. */
/* This will be initialized in setup_state() at the first move
* received/requested. This is because right now we are not aware
* about any komi or handicap setup and such. */
return u;
}
struct engine *
engine_uct_init(char *arg, struct board *b)
{
struct uct *u = uct_state_init(arg, b);
struct engine *e = calloc2(1, sizeof(struct engine));
e->name = "UCT";
e->printhook = uct_printhook_ownermap;
e->notify_play = uct_notify_play;
e->chat = uct_chat;
e->undo = uct_undo;
e->result = uct_result;
e->genmove = uct_genmove;
e->genmoves = uct_genmoves;
e->evaluate = uct_evaluate;
e->dead_group_list = uct_dead_group_list;
e->stop = uct_stop;
e->done = uct_done;
e->owner_map = uct_owner_map;
e->best_moves = uct_best_moves;
e->live_gfx_hook = uct_live_gfx_hook;
e->data = u;
if (u->slave)
e->notify = uct_notify;
const char banner[] = "If you believe you have won but I am still playing, "
"please help me understand by capturing all dead stones. "
"Anyone can send me 'winrate' in private chat to get my assessment of the position.";
if (!u->banner) u->banner = "";
e->comment = malloc2(sizeof(banner) + strlen(u->banner) + 1);
sprintf(e->comment, "%s %s", banner, u->banner);
return e;
}