pachi_py/pachi/uct/walk.c (567 lines of code) (raw):
#include <assert.h>
#include <math.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define DEBUG
#include "debug.h"
#include "board.h"
#include "move.h"
#include "playout.h"
#include "probdist.h"
#include "random.h"
#include "tactics/util.h"
#include "uct/dynkomi.h"
#include "uct/internal.h"
#include "uct/search.h"
#include "uct/tree.h"
#include "uct/uct.h"
#include "uct/walk.h"
#include "gogui.h"
#define DESCENT_DLEN 512
void
uct_progress_text(struct uct *u, struct tree *t, enum stone color, int playouts)
{
if (!UDEBUGL(0))
return;
/* Best move */
struct tree_node *best = u->policy->choose(u->policy, t->root, t->board, color, resign);
if (!best) {
fprintf(stderr, "... No moves left\n");
return;
}
fprintf(stderr, "[%d] ", playouts);
fprintf(stderr, "best %f ", tree_node_get_value(t, 1, best->u.value));
/* Dynamic komi */
if (t->use_extra_komi)
fprintf(stderr, "xkomi %.1f ", t->extra_komi);
/* Best sequence */
fprintf(stderr, "| seq ");
for (int depth = 0; depth < 4; depth++) {
if (best && best->u.playouts >= 25) {
fprintf(stderr, "%3s ", coord2sstr(node_coord(best), t->board));
best = u->policy->choose(u->policy, best, t->board, color, resign);
} else {
fprintf(stderr, " ");
}
}
/* Best candidates */
fprintf(stderr, "| can %c ", color == S_BLACK ? 'b' : 'w');
int cans = 4;
struct tree_node *can[cans];
memset(can, 0, sizeof(can));
best = t->root->children;
while (best) {
int c = 0;
while ((!can[c] || best->u.playouts > can[c]->u.playouts) && ++c < cans);
for (int d = 0; d < c; d++) can[d] = can[d + 1];
if (c > 0) can[c - 1] = best;
best = best->sibling;
}
while (--cans >= 0) {
if (can[cans]) {
fprintf(stderr, "%3s(%.3f) ",
coord2sstr(node_coord(can[cans]), t->board),
tree_node_get_value(t, 1, can[cans]->u.value));
} else {
fprintf(stderr, " ");
}
}
fprintf(stderr, "\n");
}
/* Live gfx: show best sequence in GoGui */
static void
uct_progress_gogui_sequence(struct uct *u, struct tree *t, enum stone color, int playouts)
{
/* Best move */
struct tree_node *best = u->policy->choose(u->policy, t->root, t->board, color, resign);
if (!best) {
fprintf(stderr, "... No moves left\n");
return;
}
fprintf(stderr, "gogui-gfx: VAR ");
char *col = "bw";
for (int depth = 0; depth < 4; depth++) {
if (best && best->u.playouts >= 25) {
fprintf(stderr, "%c %3s ",
col[(depth + (color == S_WHITE)) % 2],
coord2sstr(node_coord(best), t->board));
best = u->policy->choose(u->policy, best, t->board, color, resign);
}
}
fprintf(stderr, "\n");
}
/* Display best moves graphically in GoGui.
* gfx commands printed on stderr are for live gfx,
* and the last run is kept in a buffer in case we need a gtp reply.
*/
static void
uct_progress_gogui_candidates(struct uct *u, struct tree *t, enum stone color, int playouts)
{
struct tree_node *best = t->root->children;
int cans = GOGUI_CANDIDATES;
struct tree_node *can[cans];
memset(can, 0, sizeof(can));
while (best) {
int c = 0;
while ((!can[c] || best->u.playouts > can[c]->u.playouts) && ++c < cans);
for (int d = 0; d < c; d++) can[d] = can[d + 1];
if (c > 0) can[c - 1] = best;
best = best->sibling;
}
fprintf(stderr, "gogui-gfx:\n");
char *buf = gogui_gfx_buf;
if (--cans >= 0)
if (can[cans]) {
sprintf(buf, "VAR %s %s\n",
(color == S_WHITE ? "w" : "b"),
coord2sstr(node_coord(can[cans]), t->board) );
fprintf(stderr, "%s", buf);
buf += strlen(buf);
}
while (--cans >= 0)
if (can[cans]) {
sprintf(buf, "LABEL %s %i\n",
coord2sstr(node_coord(can[cans]), t->board),
GOGUI_CANDIDATES - cans);
fprintf(stderr, "%s", buf);
buf += strlen(buf);
}
fprintf(stderr, "\n");
}
/* Display best moves' winrates in GoGui.
* gfx commands printed on stderr are for live gfx,
* and the last run is kept in a buffer in case we need a gtp reply.
*/
static void
uct_progress_gogui_winrates(struct uct *u, struct tree *t, enum stone color, int playouts)
{
struct tree_node *best = t->root->children;
int cans = GOGUI_CANDIDATES;
struct tree_node *can[cans];
memset(can, 0, sizeof(can));
while (best) {
int c = 0;
while ((!can[c] || best->u.playouts > can[c]->u.playouts) && ++c < cans);
for (int d = 0; d < c; d++) can[d] = can[d + 1];
if (c > 0) can[c - 1] = best;
best = best->sibling;
}
fprintf(stderr, "gogui-gfx:\n");
char *buf = gogui_gfx_buf;
if (--cans >= 0)
if (can[cans]) {
sprintf(buf, "VAR %s %s\n",
(color == S_WHITE ? "w" : "b"),
coord2sstr(node_coord(can[cans]), t->board) );
fprintf(stderr, "%s", buf);
buf += strlen(buf);
}
cans++;
while (--cans >= 0)
if (can[cans]) {
sprintf(buf, "LABEL %s .%02u\n",
coord2sstr(node_coord(can[cans]), t->board),
(unsigned)(tree_node_get_value(t, 1, can[cans]->u.value) * 1000));
fprintf(stderr, "%s", buf);
buf += strlen(buf);
}
fprintf(stderr, "\n");
}
void
uct_progress_json(struct uct *u, struct tree *t, enum stone color, int playouts, coord_t *final, bool big)
{
/* Prefix indicating JSON line. */
fprintf(stderr, "{\"%s\": {", final ? "move" : "frame");
/* Plaout count */
fprintf(stderr, "\"playouts\": %d", playouts);
/* Dynamic komi */
if (t->use_extra_komi)
fprintf(stderr, ", \"extrakomi\": %.1f", t->extra_komi);
if (final) {
/* Final move choice */
fprintf(stderr, ", \"choice\": \"%s\"",
coord2sstr(*final, t->board));
} else {
struct tree_node *best = u->policy->choose(u->policy, t->root, t->board, color, resign);
if (best) {
/* Best move */
fprintf(stderr, ", \"best\": {\"%s\": %f}",
coord2sstr(best->coord, t->board),
tree_node_get_value(t, 1, best->u.value));
}
}
/* Best candidates */
int cans = 4;
struct tree_node *can[cans];
memset(can, 0, sizeof(can));
struct tree_node *best = t->root->children;
while (best) {
int c = 0;
while ((!can[c] || best->u.playouts > can[c]->u.playouts) && ++c < cans);
for (int d = 0; d < c; d++) can[d] = can[d + 1];
if (c > 0) can[c - 1] = best;
best = best->sibling;
}
fprintf(stderr, ", \"can\": [");
while (--cans >= 0) {
if (!can[cans]) break;
/* Best sequence */
fprintf(stderr, "%s[", cans < 3 ? ", " : "");
best = can[cans];
for (int depth = 0; depth < 4; depth++) {
if (!best || best->u.playouts < 25) break;
fprintf(stderr, "%s{\"%s\":%.3f}", depth > 0 ? "," : "",
coord2sstr(best->coord, t->board),
tree_node_get_value(t, 1, best->u.value));
best = u->policy->choose(u->policy, best, t->board, color, resign);
}
fprintf(stderr, "]");
}
fprintf(stderr, "]");
if (big) {
/* Average score. */
if (t->avg_score.playouts > 0)
fprintf(stderr, ", \"avg\": {\"score\": %.3f}", t->avg_score.value);
/* Per-intersection information. */
fprintf(stderr, ", \"boards\": {");
/* Position coloring information. */
fprintf(stderr, "\"colors\": [");
int f = 0;
foreach_point(t->board) {
if (board_at(t->board, c) == S_OFFBOARD) continue;
fprintf(stderr, "%s%d", f++ > 0 ? "," : "", board_at(t->board, c));
} foreach_point_end;
fprintf(stderr, "]");
/* Ownership statistics. Value (0..1000) for each possible
* point describes likelihood of this point becoming black.
* Normally, white rate is 1000-value; exception are possible
* seki points, but these should be rare. */
fprintf(stderr, ", \"territory\": [");
f = 0;
foreach_point(t->board) {
if (board_at(t->board, c) == S_OFFBOARD) continue;
int rate = u->ownermap.map[c][S_BLACK] * 1000 / u->ownermap.playouts;
fprintf(stderr, "%s%d", f++ > 0 ? "," : "", rate);
} foreach_point_end;
fprintf(stderr, "]");
fprintf(stderr, "}");
}
fprintf(stderr, "}}\n");
}
void
uct_progress_status(struct uct *u, struct tree *t, enum stone color, int playouts, coord_t *final)
{
switch (u->reporting) {
case UR_TEXT:
uct_progress_text(u, t, color, playouts);
break;
case UR_JSON:
case UR_JSON_BIG:
uct_progress_json(u, t, color, playouts, final,
u->reporting == UR_JSON_BIG);
break;
default: assert(0);
}
if (!gogui_live_gfx)
return;
switch(gogui_live_gfx) {
case UR_GOGUI_CAN:
uct_progress_gogui_candidates(u, t, color, playouts);
break;
case UR_GOGUI_SEQ:
uct_progress_gogui_sequence(u, t, color, playouts);
break;
case UR_GOGUI_WR:
uct_progress_gogui_winrates(u, t, color, playouts);
break;
default: assert(0);
}
}
static inline void
record_amaf_move(struct playout_amafmap *amaf, coord_t coord, bool is_ko_capture)
{
assert(amaf->gamelen < MAX_GAMELEN);
amaf->is_ko_capture[amaf->gamelen] = is_ko_capture;
amaf->game[amaf->gamelen++] = coord;
}
struct uct_playout_callback {
struct uct *uct;
struct tree *tree;
struct tree_node *lnode;
};
static coord_t
uct_playout_hook(struct playout_policy *playout, struct playout_setup *setup, struct board *b, enum stone color, int mode)
{
/* XXX: This is used in some non-master branches. */
return pass;
}
static coord_t
uct_playout_prepolicy(struct playout_policy *playout, struct playout_setup *setup, struct board *b, enum stone color)
{
return uct_playout_hook(playout, setup, b, color, 0);
}
static coord_t
uct_playout_postpolicy(struct playout_policy *playout, struct playout_setup *setup, struct board *b, enum stone color)
{
return uct_playout_hook(playout, setup, b, color, 1);
}
static int
uct_leaf_node(struct uct *u, struct board *b, enum stone player_color,
struct playout_amafmap *amaf,
struct uct_descent *descent, int *dlen,
struct tree_node *significant[2],
struct tree *t, struct tree_node *n, enum stone node_color,
char *spaces)
{
enum stone next_color = stone_other(node_color);
int parity = (next_color == player_color ? 1 : -1);
if (UDEBUGL(7))
fprintf(stderr, "%s*-- UCT playout #%d start [%s] %f\n",
spaces, n->u.playouts, coord2sstr(node_coord(n), t->board),
tree_node_get_value(t, -parity, n->u.value));
struct uct_playout_callback upc = {
.uct = u,
.tree = t,
/* TODO: Don't necessarily restart the sequence walk when
* entering playout. */
.lnode = NULL,
};
struct playout_setup ps = {
.gamelen = u->gamelen,
.mercymin = u->mercymin,
.prepolicy_hook = uct_playout_prepolicy,
.postpolicy_hook = uct_playout_postpolicy,
.hook_data = &upc,
};
int result = play_random_game(&ps, b, next_color,
u->playout_amaf ? amaf : NULL,
&u->ownermap, u->playout);
if (next_color == S_WHITE) {
/* We need the result from black's perspective. */
result = - result;
}
if (UDEBUGL(7))
fprintf(stderr, "%s -- [%d..%d] %s random playout result %d\n",
spaces, player_color, next_color, coord2sstr(node_coord(n), t->board), result);
return result;
}
static floating_t
scale_value(struct uct *u, struct board *b, enum stone node_color, struct tree_node *significant[2], int result)
{
floating_t rval = result > 0 ? 1.0 : result < 0 ? 0.0 : 0.5;
if (u->val_scale && result != 0) {
if (u->val_byavg) {
if (u->t->avg_score.playouts < 50)
return rval;
result -= u->t->avg_score.value * 2;
}
double scale = u->val_scale;
if (u->val_bytemp) {
/* xvalue is 0 at 0.5, 1 at 0 or 1 */
/* No correction for parity necessary. */
double xvalue = significant[node_color - 1] ? fabs(significant[node_color - 1]->u.value - 0.5) * 2 : 0;
scale = u->val_bytemp_min + (u->val_scale - u->val_bytemp_min) * xvalue;
}
int vp = u->val_points;
if (!vp) {
vp = board_size(b) - 1; vp *= vp; vp *= 2;
}
floating_t sval = (floating_t) abs(result) / vp;
sval = sval > 1 ? 1 : sval;
if (result < 0) sval = 1 - sval;
if (u->val_extra)
rval += scale * sval;
else
rval = (1 - scale) * rval + scale * sval;
// fprintf(stderr, "score %d => sval %f, rval %f\n", result, sval, rval);
}
return rval;
}
static double
local_value(struct uct *u, struct board *b, coord_t coord, enum stone color)
{
/* Tactical evaluation of move @coord by color @color, given
* simulation end position @b. I.e., a move is tactically good
* if the resulting group stays on board until the game end. */
/* We can also take into account surrounding stones, e.g. to
* encourage taking off external liberties during a semeai. */
double val = board_local_value(u->local_tree_neival, b, coord, color);
return (color == S_WHITE) ? 1.f - val : val;
}
static void
record_local_sequence(struct uct *u, struct tree *t, struct board *endb,
struct uct_descent *descent, int dlen, int di,
enum stone seq_color)
{
#define LTREE_DEBUG if (UDEBUGL(6))
/* Ignore pass sequences. */
if (is_pass(node_coord(descent[di].node)))
return;
LTREE_DEBUG board_print(endb, stderr);
LTREE_DEBUG fprintf(stderr, "recording local %s sequence: ",
stone2str(seq_color));
/* Sequences starting deeper are less relevant in general. */
int pval = LTREE_PLAYOUTS_MULTIPLIER;
if (u->local_tree && u->local_tree_depth_decay > 0)
pval = ((floating_t) pval) / pow(u->local_tree_depth_decay, di - 1);
if (!pval) {
LTREE_DEBUG fprintf(stderr, "too deep @%d\n", di);
return;
}
/* Pick the right local tree root... */
struct tree_node *lnode = seq_color == S_BLACK ? t->ltree_black : t->ltree_white;
lnode->u.playouts++;
/* ...determine the sequence value... */
double sval = 0.5;
if (u->local_tree_eval != LTE_EACH) {
sval = local_value(u, endb, node_coord(descent[di].node), seq_color);
LTREE_DEBUG fprintf(stderr, "(goal %s[%s %1.3f][%d]) ",
coord2sstr(node_coord(descent[di].node), t->board),
stone2str(seq_color), sval, descent[di].node->d);
if (u->local_tree_eval == LTE_TOTAL) {
int di0 = di;
while (di < dlen && (di == di0 || descent[di].node->d < u->tenuki_d)) {
enum stone color = (di - di0) % 2 ? stone_other(seq_color) : seq_color;
double rval = local_value(u, endb, node_coord(descent[di].node), color);
if ((di - di0) % 2)
rval = 1 - rval;
sval += rval;
di++;
}
sval /= (di - di0 + 1);
di = di0;
}
}
/* ...and record the sequence. */
int di0 = di;
while (di < dlen && !is_pass(node_coord(descent[di].node))
&& (di == di0 || descent[di].node->d < u->tenuki_d)) {
enum stone color = (di - di0) % 2 ? stone_other(seq_color) : seq_color;
double rval;
if (u->local_tree_eval != LTE_EACH)
rval = sval;
else
rval = local_value(u, endb, node_coord(descent[di].node), color);
LTREE_DEBUG fprintf(stderr, "%s[%s %1.3f][%d] ",
coord2sstr(node_coord(descent[di].node), t->board),
stone2str(color), rval, descent[di].node->d);
lnode = tree_get_node(t, lnode, node_coord(descent[di++].node), true);
assert(lnode);
stats_add_result(&lnode->u, rval, pval);
}
/* Add lnode for tenuki (pass) if we descended further. */
if (di < dlen) {
double rval = u->local_tree_eval != LTE_EACH ? sval : 0.5;
LTREE_DEBUG fprintf(stderr, "pass ");
lnode = tree_get_node(t, lnode, pass, true);
assert(lnode);
stats_add_result(&lnode->u, rval, pval);
}
LTREE_DEBUG fprintf(stderr, "\n");
}
int
uct_playout(struct uct *u, struct board *b, enum stone player_color, struct tree *t)
{
struct board b2;
board_copy(&b2, b);
struct playout_amafmap amaf;
amaf.gamelen = amaf.game_baselen = 0;
/* Walk the tree until we find a leaf, then expand it and do
* a random playout. */
struct tree_node *n = t->root;
enum stone node_color = stone_other(player_color);
assert(node_color == t->root_color);
/* Make sure the root node is expanded. */
if (tree_leaf_node(n) && !__sync_lock_test_and_set(&n->is_expanded, 1))
tree_expand_node(t, n, &b2, player_color, u, 1);
/* Tree descent history. */
/* XXX: This is somewhat messy since @n and descent[dlen-1].node are
* redundant. */
struct uct_descent descent[DESCENT_DLEN];
descent[0].node = n; descent[0].lnode = NULL;
int dlen = 1;
/* Total value of the sequence. */
struct move_stats seq_value = { .playouts = 0 };
/* The last "significant" node along the descent (i.e. node
* with higher than configured number of playouts). For black
* and white. */
struct tree_node *significant[2] = { NULL, NULL };
if (n->u.playouts >= u->significant_threshold)
significant[node_color - 1] = n;
int result;
int pass_limit = (board_size(&b2) - 2) * (board_size(&b2) - 2) / 2;
int passes = is_pass(b->last_move.coord) && b->moves > 0;
/* debug */
static char spaces[] = "\0 ";
/* /debug */
if (UDEBUGL(8))
fprintf(stderr, "--- (#%d) UCT walk with color %d\n", t->root->u.playouts, player_color);
while (!tree_leaf_node(n) && passes < 2) {
spaces[dlen - 1] = ' '; spaces[dlen] = 0;
/*** Choose a node to descend to: */
/* Parity is chosen already according to the child color, since
* it is applied to children. */
node_color = stone_other(node_color);
int parity = (node_color == player_color ? 1 : -1);
assert(dlen < DESCENT_DLEN);
descent[dlen] = descent[dlen - 1];
if (u->local_tree && (!descent[dlen].lnode || descent[dlen].node->d >= u->tenuki_d)) {
/* Start new local sequence. */
/* Remember that node_color already holds color of the
* to-be-found child. */
descent[dlen].lnode = node_color == S_BLACK ? t->ltree_black : t->ltree_white;
}
if (!u->random_policy_chance || fast_random(u->random_policy_chance))
u->policy->descend(u->policy, t, &descent[dlen], parity, b2.moves > pass_limit);
else
u->random_policy->descend(u->random_policy, t, &descent[dlen], parity, b2.moves > pass_limit);
/*** Perform the descent: */
if (descent[dlen].node->u.playouts >= u->significant_threshold) {
significant[node_color - 1] = descent[dlen].node;
}
seq_value.playouts += descent[dlen].value.playouts;
seq_value.value += descent[dlen].value.value * descent[dlen].value.playouts;
n = descent[dlen++].node;
assert(n == t->root || n->parent);
if (UDEBUGL(7))
fprintf(stderr, "%s+-- UCT sent us to [%s:%d] %d,%f\n",
spaces, coord2sstr(node_coord(n), t->board),
node_coord(n), n->u.playouts,
tree_node_get_value(t, parity, n->u.value));
if (u->virtual_loss)
__sync_fetch_and_add(&n->descents, u->virtual_loss);
struct move m = { node_coord(n), node_color };
int res = board_play(&b2, &m);
if (res < 0 || (!is_pass(m.coord) && !group_at(&b2, m.coord)) /* suicide */
|| b2.superko_violation) {
if (UDEBUGL(4)) {
for (struct tree_node *ni = n; ni; ni = ni->parent)
fprintf(stderr, "%s<%"PRIhash"> ", coord2sstr(node_coord(ni), t->board), ni->hash);
fprintf(stderr, "marking invalid %s node %d,%d res %d group %d spk %d\n",
stone2str(node_color), coord_x(node_coord(n),b), coord_y(node_coord(n),b),
res, group_at(&b2, m.coord), b2.superko_violation);
}
n->hints |= TREE_HINT_INVALID;
result = 0;
goto end;
}
assert(node_coord(n) >= -1);
record_amaf_move(&amaf, node_coord(n), board_playing_ko_threat(&b2));
if (is_pass(node_coord(n)))
passes++;
else
passes = 0;
enum stone next_color = stone_other(node_color);
/* We need to make sure only one thread expands the node. If
* we are unlucky enough for two threads to meet in the same
* node, the latter one will simply do another simulation from
* the node itself, no big deal. t->nodes_size may exceed
* the maximum in multi-threaded case but not by much so it's ok.
* The size test must be before the test&set not after, to allow
* expansion of the node later if enough nodes have been freed. */
if (tree_leaf_node(n)
&& n->u.playouts - u->virtual_loss >= u->expand_p && t->nodes_size < u->max_tree_size
&& !__sync_lock_test_and_set(&n->is_expanded, 1))
tree_expand_node(t, n, &b2, next_color, u, -parity);
}
amaf.game_baselen = amaf.gamelen;
if (t->use_extra_komi && u->dynkomi->persim) {
b2.komi += round(u->dynkomi->persim(u->dynkomi, &b2, t, n));
}
/* !!! !!! !!!
* ALERT: The "result" number is extremely confusing. In some parts
* of the code, it is from white's perspective, but here positive
* number is black's win! Be VERY CAREFUL.
* !!! !!! !!! */
if (passes >= 2) {
/* XXX: No dead groups support. */
floating_t score = board_official_score(&b2, NULL);
/* Result from black's perspective (no matter who
* the player; black's perspective is always
* what the tree stores. */
result = - (score * 2);
if (UDEBUGL(5))
fprintf(stderr, "[%d..%d] %s p-p scoring playout result %d (W %f)\n",
player_color, node_color, coord2sstr(node_coord(n), t->board), result, score);
if (UDEBUGL(6))
board_print(&b2, stderr);
board_ownermap_fill(&u->ownermap, &b2);
} else { // assert(tree_leaf_node(n));
/* In case of parallel tree search, the assertion might
* not hold if two threads chew on the same node. */
result = uct_leaf_node(u, &b2, player_color, &amaf, descent, &dlen, significant, t, n, node_color, spaces);
}
if (u->policy->wants_amaf && u->playout_amaf_cutoff) {
unsigned int cutoff = amaf.game_baselen;
cutoff += (amaf.gamelen - amaf.game_baselen) * u->playout_amaf_cutoff / 100;
amaf.gamelen = cutoff;
}
/* Record the result. */
assert(n == t->root || n->parent);
floating_t rval = scale_value(u, b, node_color, significant, result);
u->policy->update(u->policy, t, n, node_color, player_color, &amaf, &b2, rval);
stats_add_result(&t->avg_score, result / 2, 1);
if (t->use_extra_komi) {
stats_add_result(&u->dynkomi->score, result / 2, 1);
stats_add_result(&u->dynkomi->value, rval, 1);
}
if (u->local_tree && n->parent && !is_pass(node_coord(n)) && dlen > 0) {
/* Get the local sequences and record them in ltree. */
/* We will look for sequence starts in our descent
* history, then run record_local_sequence() for each
* found sequence start; record_local_sequence() may
* pick longer sequences from descent history then,
* which is expected as it will create new lnodes. */
enum stone seq_color = player_color;
/* First move always starts a sequence. */
record_local_sequence(u, t, &b2, descent, dlen, 1, seq_color);
seq_color = stone_other(seq_color);
for (int dseqi = 2; dseqi < dlen; dseqi++, seq_color = stone_other(seq_color)) {
if (u->local_tree_allseq) {
/* We are configured to record all subsequences. */
record_local_sequence(u, t, &b2, descent, dlen, dseqi, seq_color);
continue;
}
if (descent[dseqi].node->d >= u->tenuki_d) {
/* Tenuki! Record the fresh sequence. */
record_local_sequence(u, t, &b2, descent, dlen, dseqi, seq_color);
continue;
}
if (descent[dseqi].lnode && !descent[dseqi].lnode) {
/* Record result for in-descent picked sequence. */
record_local_sequence(u, t, &b2, descent, dlen, dseqi, seq_color);
continue;
}
}
}
end:
/* We need to undo the virtual loss we added during descend. */
if (u->virtual_loss) {
for (; n->parent; n = n->parent) {
__sync_fetch_and_sub(&n->descents, u->virtual_loss);
}
}
board_done_noalloc(&b2);
return result;
}
int
uct_playouts(struct uct *u, struct board *b, enum stone color, struct tree *t, struct time_info *ti)
{
int i;
if (ti && ti->dim == TD_GAMES) {
for (i = 0; t->root->u.playouts <= ti->len.games && !uct_halt; i++)
uct_playout(u, b, color, t);
} else {
for (i = 0; !uct_halt; i++)
uct_playout(u, b, color, t);
}
return i;
}