in point_e/evals/feature_extractor.py [0:0]
def features_and_preds(self, streamer: NpzStreamer) -> Tuple[np.ndarray, np.ndarray]:
batch_size = self.device_batch_size * len(self.devices)
point_clouds = (x["arr_0"] for x in streamer.stream(batch_size, ["arr_0"]))
output_features = []
output_predictions = []
with ThreadPool(len(self.devices)) as pool:
for batch in point_clouds:
batch = normalize_point_clouds(batch)
batches = []
for i, device in zip(range(0, len(batch), self.device_batch_size), self.devices):
batches.append(
torch.from_numpy(batch[i : i + self.device_batch_size])
.permute(0, 2, 1)
.to(dtype=torch.float32, device=device)
)
def compute_features(i_batch):
i, batch = i_batch
with torch.no_grad():
return self.models[i](batch, features=True)
for logits, _, features in pool.imap(compute_features, enumerate(batches)):
output_features.append(features.cpu().numpy())
output_predictions.append(logits.exp().cpu().numpy())
return np.concatenate(output_features, axis=0), np.concatenate(output_predictions, axis=0)