def sample_euler_ancestral()

in point_e/diffusion/k_diffusion.py [0:0]


def sample_euler_ancestral(model, x, sigmas, progress=False):
    """Ancestral sampling with Euler method steps."""
    s_in = x.new_ones([x.shape[0]])
    indices = range(len(sigmas) - 1)
    if progress:
        from tqdm.auto import tqdm

        indices = tqdm(indices)

    for i in indices:
        denoised = model(x, sigmas[i] * s_in)
        sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
        yield {"x": x, "i": i, "sigma": sigmas[i], "sigma_hat": sigmas[i], "pred_xstart": denoised}
        d = to_d(x, sigmas[i], denoised)
        # Euler method
        dt = sigma_down - sigmas[i]
        x = x + d * dt
        x = x + th.randn_like(x) * sigma_up
    yield {"x": x, "pred_xstart": x}