ppo_ewma/tree_util.py (119 lines of code) (raw):
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# JDS: copied this from jax, made it self-contained
# Currently just used for improved_checkpoint
# pylint: disable=bad-indentation
import functools
import itertools as it
import collections
def unzip2(xys):
xs = []
ys = []
for x, y in xys:
xs.append(x)
ys.append(y)
return tuple(xs), tuple(ys)
def partial(fun, *args, **kwargs):
wrapped = functools.partial(fun, *args, **kwargs)
functools.update_wrapper(wrapped, fun)
wrapped._bound_args = args # pylint: disable=protected-access
return wrapped
def concatenate(xs):
return list(it.chain.from_iterable(xs))
def tree_map(f, tree):
"""Map a function over a pytree to produce a new pytree.
Args:
f: function to be applied at each leaf.
tree: a pytree to be mapped over.
Returns:
A new pytree with the same structure as `tree` but with the value at each
leaf given by `f(x)` where `x` is the value at the corresponding leaf in
`tree`.
"""
node_type = node_types.get(type(tree))
if node_type:
children, node_spec = node_type.to_iterable(tree)
new_children = [tree_map(f, child) for child in children]
return node_type.from_iterable(node_spec, new_children)
else:
return f(tree)
def tree_multimap(f, tree, *rest):
"""Map a multi-input function over pytree args to produce a new pytree.
Args:
f: function that takes `1 + len(rest)` arguments, to be applied at the
corresponding leaves of the pytrees.
tree: a pytree to be mapped over, with each leaf providing the first
positional argument to `f`.
*rest: a tuple of pytrees, each with the same structure as `tree`.
Returns:
A new pytree with the same structure as `tree` but with the value at each
leaf given by `f(x, *xs)` where `x` is the value at the corresponding leaf
in `tree` and `xs` is the tuple of values at corresponding leaves in `rest`.
"""
# equivalent to prefix_multimap(f, tree_structure(tree), tree, *rest)
node_type = node_types.get(type(tree))
if node_type:
children, node_spec = node_type.to_iterable(tree)
all_children = [children]
for other_tree in rest:
# other_node_type = node_types.get(type(other_tree))
# if node_type != other_node_type:
# raise TypeError('Mismatch: {} != {}'.format(other_node_type, node_type))
other_children, other_node_data = node_type.to_iterable(other_tree)
if other_node_data != node_spec:
raise TypeError("Mismatch: {} != {}".format(other_node_data, node_spec))
all_children.append(other_children)
new_children = [tree_multimap(f, *xs) for xs in zip(*all_children)]
return node_type.from_iterable(node_spec, new_children)
else:
return f(tree, *rest)
def tree_reduce(f, tree):
flat, _ = tree_flatten(tree)
return functools.reduce(f, flat)
def tree_all(tree):
flat, _ = tree_flatten(tree)
return all(flat)
def walk_pytree(f_node, f_leaf, tree):
node_type = node_types.get(type(tree))
if node_type:
children, node_spec = node_type.to_iterable(tree)
proc_children, child_specs = unzip2(
[walk_pytree(f_node, f_leaf, child) for child in children]
)
tree_def = PyTreeDef(node_type, node_spec, child_specs)
return f_node(proc_children), tree_def
else:
return f_leaf(tree), PyLeaf()
tree_flatten = partial(walk_pytree, concatenate, lambda x: [x])
class PyTreeDef(object):
def __init__(self, node_type, node_data, children):
self.node_type = node_type
self.node_data = node_data
self.children = children
def __repr__(self):
if self.node_data is None:
data_repr = ""
else:
data_repr = "[{}]".format(self.node_data)
return "PyTree({}{}, [{}])".format(
self.node_type.name, data_repr, ",".join(safe_map(repr, self.children))
)
def __hash__(self):
return hash((self.node_type, self.node_data, tuple(self.children)))
def __eq__(self, other):
if isinstance(other, PyLeaf):
return False
else:
return (
self.node_type == other.node_type
and self.node_data == other.node_data
and self.children == other.children
)
def __ne__(self, other):
return not self == other
class PyLeaf(object):
def __repr__(self):
return "*"
def __eq__(self, other):
return isinstance(other, PyLeaf)
class NodeType(object):
def __init__(self, name, to_iterable, from_iterable):
self.name = name
self.to_iterable = to_iterable
self.from_iterable = from_iterable
node_types = {}
def register_pytree_node(py_type, to_iterable, from_iterable):
assert py_type not in node_types
node_types[py_type] = NodeType(str(py_type), to_iterable, from_iterable)
def tuple_to_iterable(xs):
return xs, None
def tuple_from_iterable(_keys, xs):
return tuple(xs)
def list_to_iterable(xs):
return tuple(xs), None
def list_from_iterable(_keys, xs):
return list(xs)
def dict_to_iterable(xs):
keys = tuple(sorted(xs.keys()))
return tuple(map(xs.get, keys)), keys
def dict_from_iterable(keys, xs):
return dict(zip(keys, xs))
def none_to_iterable(_xs):
return (), None
def none_from_iterable(_keys, _xs):
return None
register_pytree_node(tuple, tuple_to_iterable, tuple_from_iterable)
register_pytree_node(list, list_to_iterable, list_from_iterable)
register_pytree_node(dict, dict_to_iterable, dict_from_iterable)
register_pytree_node(collections.OrderedDict, dict_to_iterable, dict_from_iterable)
register_pytree_node(type(None), none_to_iterable, none_from_iterable)