ppo_ewma/tree_util.py (119 lines of code) (raw):

# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # JDS: copied this from jax, made it self-contained # Currently just used for improved_checkpoint # pylint: disable=bad-indentation import functools import itertools as it import collections def unzip2(xys): xs = [] ys = [] for x, y in xys: xs.append(x) ys.append(y) return tuple(xs), tuple(ys) def partial(fun, *args, **kwargs): wrapped = functools.partial(fun, *args, **kwargs) functools.update_wrapper(wrapped, fun) wrapped._bound_args = args # pylint: disable=protected-access return wrapped def concatenate(xs): return list(it.chain.from_iterable(xs)) def tree_map(f, tree): """Map a function over a pytree to produce a new pytree. Args: f: function to be applied at each leaf. tree: a pytree to be mapped over. Returns: A new pytree with the same structure as `tree` but with the value at each leaf given by `f(x)` where `x` is the value at the corresponding leaf in `tree`. """ node_type = node_types.get(type(tree)) if node_type: children, node_spec = node_type.to_iterable(tree) new_children = [tree_map(f, child) for child in children] return node_type.from_iterable(node_spec, new_children) else: return f(tree) def tree_multimap(f, tree, *rest): """Map a multi-input function over pytree args to produce a new pytree. Args: f: function that takes `1 + len(rest)` arguments, to be applied at the corresponding leaves of the pytrees. tree: a pytree to be mapped over, with each leaf providing the first positional argument to `f`. *rest: a tuple of pytrees, each with the same structure as `tree`. Returns: A new pytree with the same structure as `tree` but with the value at each leaf given by `f(x, *xs)` where `x` is the value at the corresponding leaf in `tree` and `xs` is the tuple of values at corresponding leaves in `rest`. """ # equivalent to prefix_multimap(f, tree_structure(tree), tree, *rest) node_type = node_types.get(type(tree)) if node_type: children, node_spec = node_type.to_iterable(tree) all_children = [children] for other_tree in rest: # other_node_type = node_types.get(type(other_tree)) # if node_type != other_node_type: # raise TypeError('Mismatch: {} != {}'.format(other_node_type, node_type)) other_children, other_node_data = node_type.to_iterable(other_tree) if other_node_data != node_spec: raise TypeError("Mismatch: {} != {}".format(other_node_data, node_spec)) all_children.append(other_children) new_children = [tree_multimap(f, *xs) for xs in zip(*all_children)] return node_type.from_iterable(node_spec, new_children) else: return f(tree, *rest) def tree_reduce(f, tree): flat, _ = tree_flatten(tree) return functools.reduce(f, flat) def tree_all(tree): flat, _ = tree_flatten(tree) return all(flat) def walk_pytree(f_node, f_leaf, tree): node_type = node_types.get(type(tree)) if node_type: children, node_spec = node_type.to_iterable(tree) proc_children, child_specs = unzip2( [walk_pytree(f_node, f_leaf, child) for child in children] ) tree_def = PyTreeDef(node_type, node_spec, child_specs) return f_node(proc_children), tree_def else: return f_leaf(tree), PyLeaf() tree_flatten = partial(walk_pytree, concatenate, lambda x: [x]) class PyTreeDef(object): def __init__(self, node_type, node_data, children): self.node_type = node_type self.node_data = node_data self.children = children def __repr__(self): if self.node_data is None: data_repr = "" else: data_repr = "[{}]".format(self.node_data) return "PyTree({}{}, [{}])".format( self.node_type.name, data_repr, ",".join(safe_map(repr, self.children)) ) def __hash__(self): return hash((self.node_type, self.node_data, tuple(self.children))) def __eq__(self, other): if isinstance(other, PyLeaf): return False else: return ( self.node_type == other.node_type and self.node_data == other.node_data and self.children == other.children ) def __ne__(self, other): return not self == other class PyLeaf(object): def __repr__(self): return "*" def __eq__(self, other): return isinstance(other, PyLeaf) class NodeType(object): def __init__(self, name, to_iterable, from_iterable): self.name = name self.to_iterable = to_iterable self.from_iterable = from_iterable node_types = {} def register_pytree_node(py_type, to_iterable, from_iterable): assert py_type not in node_types node_types[py_type] = NodeType(str(py_type), to_iterable, from_iterable) def tuple_to_iterable(xs): return xs, None def tuple_from_iterable(_keys, xs): return tuple(xs) def list_to_iterable(xs): return tuple(xs), None def list_from_iterable(_keys, xs): return list(xs) def dict_to_iterable(xs): keys = tuple(sorted(xs.keys())) return tuple(map(xs.get, keys)), keys def dict_from_iterable(keys, xs): return dict(zip(keys, xs)) def none_to_iterable(_xs): return (), None def none_from_iterable(_keys, _xs): return None register_pytree_node(tuple, tuple_to_iterable, tuple_from_iterable) register_pytree_node(list, list_to_iterable, list_from_iterable) register_pytree_node(dict, dict_to_iterable, dict_from_iterable) register_pytree_node(collections.OrderedDict, dict_to_iterable, dict_from_iterable) register_pytree_node(type(None), none_to_iterable, none_from_iterable)