void S9xSetSA1()

in cores/snes/sa1.cpp [393:752]


void S9xSetSA1 (uint8 byte, uint32 address)
{
	switch (address)
	{
		case 0x2200: // SA-1 control
		#ifdef DEBUGGER
			if (byte & 0x60)
				printf("SA-1 sleep\n");
		#endif

			// SA-1 reset
			if (!(byte & 0x80) && (Memory.FillRAM[0x2200] & 0x20))
			{
			#ifdef DEBUGGER
				printf("SA-1 reset\n");
			#endif
				SA1Registers.PBPC = 0;
				SA1Registers.PB = 0;
				SA1Registers.PCw = Memory.FillRAM[0x2203] | (Memory.FillRAM[0x2204] << 8);
				S9xSA1SetPCBase(SA1Registers.PBPC);
			}

			// SA-1 IRQ control
			if (byte & 0x80)
			{
				Memory.FillRAM[0x2301] |= 0x80;
				if (Memory.FillRAM[0x220a] & 0x80)
					Memory.FillRAM[0x220b] &= ~0x80;
			}

			// SA-1 NMI control
			if (byte & 0x10)
			{
				Memory.FillRAM[0x2301] |= 0x10;
				if (Memory.FillRAM[0x220a] & 0x10)
					Memory.FillRAM[0x220b] &= ~0x10;
			}

			break;

		case 0x2201: // S-CPU interrupt enable
			// S-CPU IRQ enable
			if (((byte ^ Memory.FillRAM[0x2201]) & 0x80) && (Memory.FillRAM[0x2300] & byte & 0x80))
			{
				Memory.FillRAM[0x2202] &= ~0x80;
				CPU.IRQExternal = TRUE;
			}

			// S-CPU CHDMA IRQ enable
			if (((byte ^ Memory.FillRAM[0x2201]) & 0x20) && (Memory.FillRAM[0x2300] & byte & 0x20))
			{
				Memory.FillRAM[0x2202] &= ~0x20;
				CPU.IRQExternal = TRUE;
			}

			break;

		case 0x2202: // S-CPU interrupt clear
			// S-CPU IRQ clear
			if (byte & 0x80)
				Memory.FillRAM[0x2300] &= ~0x80;

			// S-CPU CHDMA IRQ clear
			if (byte & 0x20)
				Memory.FillRAM[0x2300] &= ~0x20;

			if (!(Memory.FillRAM[0x2300] & 0xa0))
				CPU.IRQExternal = FALSE;

			break;

		case 0x2203: // SA-1 reset vector (L)
		case 0x2204: // SA-1 reset vector (H)
		case 0x2205: // SA-1 NMI vector (L)
		case 0x2206: // SA-1 NMI vector (H)
		case 0x2207: // SA-1 IRQ vector (L)
		case 0x2208: // SA-1 IRQ vector (H)
			break;

		case 0x2209: // S-CPU control
			// 0x40: S-CPU IRQ overwrite
			// 0x20: S-CPU NMI overwrite

			// S-CPU IRQ control
			if (byte & 0x80)
			{
				Memory.FillRAM[0x2300] |= 0x80;
				if (Memory.FillRAM[0x2201] & 0x80)
				{
					Memory.FillRAM[0x2202] &= ~0x80;
					CPU.IRQExternal = TRUE;
				}
			}

			break;

		case 0x220a: // SA-1 interrupt enable
			// SA-1 IRQ enable
			if (((byte ^ Memory.FillRAM[0x220a]) & 0x80) && (Memory.FillRAM[0x2301] & byte & 0x80))
				Memory.FillRAM[0x220b] &= ~0x80;

			// SA-1 timer IRQ enable
			if (((byte ^ Memory.FillRAM[0x220a]) & 0x40) && (Memory.FillRAM[0x2301] & byte & 0x40))
				Memory.FillRAM[0x220b] &= ~0x40;

			// SA-1 DMA IRQ enable
			if (((byte ^ Memory.FillRAM[0x220a]) & 0x20) && (Memory.FillRAM[0x2301] & byte & 0x20))
				Memory.FillRAM[0x220b] &= ~0x20;

			// SA-1 NMI enable
			if (((byte ^ Memory.FillRAM[0x220a]) & 0x10) && (Memory.FillRAM[0x2301] & byte & 0x10))
				Memory.FillRAM[0x220b] &= ~0x10;

			break;

		case 0x220b: // SA-1 interrupt clear
			// SA-1 IRQ clear
			if (byte & 0x80)
				Memory.FillRAM[0x2301] &= ~0x80;

			// SA-1 timer IRQ clear
			if (byte & 0x40)
				Memory.FillRAM[0x2301] &= ~0x40;

			// SA-1 DMA IRQ clear
			if (byte & 0x20)
				Memory.FillRAM[0x2301] &= ~0x20;

			// SA-1 NMI clear
			if (byte & 0x10)
				Memory.FillRAM[0x2301] &= ~0x10;

			break;

		case 0x220c: // S-CPU NMI vector (L)
		case 0x220d: // S-CPU NMI vector (H)
		case 0x220e: // S-CPU IRQ vector (L)
		case 0x220f: // S-CPU IRQ vector (H)
			break;

		case 0x2210: // SA-1 timer control
			// 0x80: mode (linear / HV)
			// 0x02: V timer enable
			// 0x01: H timer enable
		#ifdef DEBUGGER
			printf("SA-1 timer control write:%02x\n", byte);
		#endif
			break;

		case 0x2211: // SA-1 timer reset
			SA1.HCounter = 0;
			SA1.VCounter = 0;
			break;

		case 0x2212: // SA-1 H-timer (L)
			SA1.HTimerIRQPos = byte | (Memory.FillRAM[0x2213] << 8);
			break;

		case 0x2213: // SA-1 H-timer (H)
			SA1.HTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2212];
			break;

		case 0x2214: // SA-1 V-timer (L)
			SA1.VTimerIRQPos = byte | (Memory.FillRAM[0x2215] << 8);
			break;

		case 0x2215: // SA-1 V-timer (H)
			SA1.VTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2214];
			break;

		case 0x2220: // MMC bank C
		case 0x2221: // MMC bank D
		case 0x2222: // MMC bank E
		case 0x2223: // MMC bank F
			S9xSetSA1MemMap(address - 0x2220, byte);
			break;

		case 0x2224: // S-CPU BW-RAM mapping
			Memory.BWRAM = Memory.SRAM + (byte & 7) * 0x2000;
			break;

		case 0x2225: // SA-1 BW-RAM mapping
			if (byte != Memory.FillRAM[0x2225])
				S9xSA1SetBWRAMMemMap(byte);

			break;

		case 0x2226: // S-CPU BW-RAM write enable
		case 0x2227: // SA-1 BW-RAM write enable
		case 0x2228: // BW-RAM write-protected area
		case 0x2229: // S-CPU I-RAM write protection
		case 0x222a: // SA-1 I-RAM write protection
			break;

		case 0x2230: // DMA control
			// 0x80: enable
			// 0x40: priority (DMA / SA-1)
			// 0x20: character conversion / normal
			// 0x10: BW-RAM -> I-RAM / SA-1 -> I-RAM
			// 0x04: destinatin (BW-RAM / I-RAM)
			// 0x03: source
			break;

		case 0x2231: // character conversion DMA parameters
			// 0x80: CHDEND (complete / incomplete)
			// 0x03: color mode
			// (byte >> 2) & 7: virtual VRAM width
			if (byte & 0x80)
				SA1.in_char_dma = FALSE;

			break;

		case 0x2232: // DMA source start address (LL)
		case 0x2233: // DMA source start address (LH)
		case 0x2234: // DMA source start address (HL)
			break;

		case 0x2235: // DMA destination start address (LL)
			break;

		case 0x2236: // DMA destination start address (LH)
			Memory.FillRAM[0x2236] = byte;

			if ((Memory.FillRAM[0x2230] & 0xa4) == 0x80) // Normal DMA to I-RAM
				S9xSA1DMA();
			else
			if ((Memory.FillRAM[0x2230] & 0xb0) == 0xb0) // CC1
			{
				SA1.in_char_dma = TRUE;

				Memory.FillRAM[0x2300] |= 0x20;
				if (Memory.FillRAM[0x2201] & 0x20)
				{
					Memory.FillRAM[0x2202] &= ~0x20;
					CPU.IRQExternal = TRUE;
				}
			}

			break;

		case 0x2237: // DMA destination start address (HL)
			Memory.FillRAM[0x2237] = byte;

			if ((Memory.FillRAM[0x2230] & 0xa4) == 0x84) // Normal DMA to BW-RAM
				S9xSA1DMA();

			break;

		case 0x2238: // DMA terminal counter (L)
		case 0x2239: // DMA terminal counter (H)
			break;

		case 0x223f: // BW-RAM bitmap format
			SA1.VirtualBitmapFormat = (byte & 0x80) ? 2 : 4;
			break;

		case 0x2240: // bitmap register 0
		case 0x2241: // bitmap register 1
		case 0x2242: // bitmap register 2
		case 0x2243: // bitmap register 3
		case 0x2244: // bitmap register 4
		case 0x2245: // bitmap register 5
		case 0x2246: // bitmap register 6
		case 0x2247: // bitmap register 7
		case 0x2248: // bitmap register 8
		case 0x2249: // bitmap register 9
		case 0x224a: // bitmap register A
		case 0x224b: // bitmap register B
		case 0x224c: // bitmap register C
		case 0x224d: // bitmap register D
		case 0x224e: // bitmap register E
			break;

		case 0x224f: // bitmap register F
			Memory.FillRAM[0x224f] = byte;

			if ((Memory.FillRAM[0x2230] & 0xb0) == 0xa0) // CC2
			{
				memmove(&Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + SA1.in_char_dma * 16, &Memory.FillRAM[0x2240], 16);
				SA1.in_char_dma = (SA1.in_char_dma + 1) & 7;
				if ((SA1.in_char_dma & 3) == 0)
					S9xSA1CharConv2();
			}

			break;

		case 0x2250: // arithmetic control
			if (byte & 2)
				SA1.sum = 0;
			SA1.arithmetic_op = byte & 3;
			break;

		case 0x2251: // multiplicand / dividend (L)
			SA1.op1 = (SA1.op1 & 0xff00) |  byte;
			break;

		case 0x2252: // multiplicand / dividend (H)
			SA1.op1 = (SA1.op1 & 0x00ff) | (byte << 8);
			break;

		case 0x2253: // multiplier / divisor (L)
			SA1.op2 = (SA1.op2 & 0xff00) |  byte;
			break;

		case 0x2254: // multiplier / divisor (H)
			SA1.op2 = (SA1.op2 & 0x00ff) | (byte << 8);

			switch (SA1.arithmetic_op)
			{
				case 0:	// signed multiplication
					SA1.sum = (int16) SA1.op1 * (int16) SA1.op2;
					SA1.op2 = 0;
					break;

				case 1: // unsigned division
					if (SA1.op2 == 0)
						SA1.sum = 0;
					else
					{
						int16	quotient  = (int16) SA1.op1 / (uint16) SA1.op2;
						uint16	remainder = (int16) SA1.op1 % (uint16) SA1.op2;
						SA1.sum = (remainder << 16) | quotient;
					}

					SA1.op1 = 0;
					SA1.op2 = 0;
					break;

				case 2: // cumulative sum
				default:
					SA1.sum += (int16) SA1.op1 * (int16) SA1.op2;
					SA1.overflow = (SA1.sum >= (1ULL << 40));
					SA1.sum &= (1ULL << 40) - 1;
					SA1.op2 = 0;
					break;
			}

			break;

		case 0x2258: // variable bit-field length / auto inc / start
			Memory.FillRAM[0x2258] = byte;
			S9xSA1ReadVariableLengthData(TRUE, FALSE);
			return;

		case 0x2259: // variable bit-field start address (LL)
		case 0x225a: // variable bit-field start address (LH)
		case 0x225b: // variable bit-field start address (HL)
			Memory.FillRAM[address] = byte;
			// XXX: ???
			SA1.variable_bit_pos = 0;
			S9xSA1ReadVariableLengthData(FALSE, TRUE);
			return;

		default:
			break;
	}

	if (address >= 0x2200 && address <= 0x22ff)
		Memory.FillRAM[address] = byte;
}