shap_e/models/transmitter/channels_encoder.py [763:774]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            inner_batch = []
            for arr in inner_list:
                tensor = torch.from_numpy(arr).clamp(max=self.max_depth) / self.max_depth
                tensor = tensor * 2 - 1
                tensor = F.interpolate(
                    tensor[None, None],
                    (self.image_size,) * 2,
                    mode="nearest",
                )
                inner_batch.append(tensor.to(device=self.device, dtype=torch.float32))
            tensor_batch.append(torch.cat(inner_batch, dim=0))
        return torch.stack(tensor_batch, dim=0)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



shap_e/models/transmitter/multiview_encoder.py [164:175]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            inner_batch = []
            for arr in inner_list:
                tensor = torch.from_numpy(arr).clamp(max=self.max_depth) / self.max_depth
                tensor = tensor * 2 - 1
                tensor = F.interpolate(
                    tensor[None, None],
                    (self.image_size,) * 2,
                    mode="nearest",
                )
                inner_batch.append(tensor.to(device=self.device, dtype=torch.float32))
            tensor_batch.append(torch.cat(inner_batch, dim=0))
        return torch.stack(tensor_batch, dim=0)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



