shap_e/models/transmitter/channels_encoder.py [805:818]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self, depths: Union[torch.Tensor, List[List[Image.Image]]]
    ) -> torch.Tensor:
        """
        Returns a [batch x num_views x 1 x size x size] tensor
        """
        if isinstance(depths, torch.Tensor):
            return depths

        tensor_batch = []
        num_views = len(depths[0])
        for inner_list in depths:
            assert len(inner_list) == num_views
            inner_batch = []
            for arr in inner_list:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



shap_e/models/transmitter/pc_encoder.py [377:390]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self, depths: Union[torch.Tensor, List[List[Image.Image]]]
    ) -> torch.Tensor:
        """
        Returns a [batch x num_views x 1 x size x size] tensor in the range [-1, 1].
        """
        if isinstance(depths, torch.Tensor):
            return depths

        tensor_batch = []
        num_views = len(depths[0])
        for inner_list in depths:
            assert len(inner_list) == num_views
            inner_batch = []
            for arr in inner_list:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



