def forward()

in shap_e/models/nn/ops.py [0:0]


    def forward(self, xyz, points):
        """
        Input:
            xyz: input points position data, [B, C, N]
            points: input points data, [B, D, N]
        Return:
            new_points: sample points feature data, [B, d_hidden[-1], n_point]
        """
        xyz = xyz.permute(0, 2, 1)
        if points is not None:
            points = points.permute(0, 2, 1)

        if self.group_all:
            new_xyz, new_points = sample_and_group_all(xyz, points)
        else:
            new_xyz, new_points = sample_and_group(
                self.n_point,
                self.radius,
                self.n_sample,
                xyz,
                points,
                deterministic=not self.training,
                fps_method=self.fps_method,
            )
        # new_xyz: sampled points position data, [B, n_point, C]
        # new_points: sampled points data, [B, n_point, n_sample, C+D]
        new_points = new_points.permute(0, 3, 2, 1)  # [B, C+D, n_sample, n_point]
        for i, conv in enumerate(self.mlp_convs):
            new_points = self.act(self.apply_conv(new_points, conv))

        new_points = new_points.mean(dim=2)
        return new_points