in shap_e/diffusion/k_diffusion.py [0:0]
def training_losses(self, model, x_start, sigmas, model_kwargs=None, noise=None):
if model_kwargs is None:
model_kwargs = {}
if noise is None:
noise = th.randn_like(x_start)
terms = {}
dims = x_start.ndim
x_t = x_start + noise * append_dims(sigmas, dims)
c_skip, c_out, _ = [append_dims(x, dims) for x in self.get_scalings(sigmas)]
model_output, denoised = self.denoise(model, x_t, sigmas, **model_kwargs)
target = (x_start - c_skip * x_t) / c_out
terms["mse"] = mean_flat((model_output - target) ** 2)
terms["xs_mse"] = mean_flat((denoised - x_start) ** 2)
if "vb" in terms:
terms["loss"] = terms["mse"] + terms["vb"]
else:
terms["loss"] = terms["mse"]
return terms