def forward()

in sparse_autoencoder/model.py [0:0]


    def forward(self, x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """
        :param x: input data (shape: [batch, n_inputs])
        :return:  autoencoder latents pre activation (shape: [batch, n_latents])
                  autoencoder latents (shape: [batch, n_latents])
                  reconstructed data (shape: [batch, n_inputs])
        """
        x, info = self.preprocess(x)
        latents_pre_act = self.encode_pre_act(x)
        latents = self.activation(latents_pre_act)
        recons = self.decode(latents, info)

        # set all indices of self.stats_last_nonzero where (latents != 0) to 0
        self.stats_last_nonzero *= (latents == 0).all(dim=0).long()
        self.stats_last_nonzero += 1

        return latents_pre_act, latents, recons