in sparse_autoencoder/model.py [0:0]
def decode(self, latents: torch.Tensor, info: dict[str, Any] | None = None) -> torch.Tensor:
"""
:param latents: autoencoder latents (shape: [batch, n_latents])
:return: reconstructed data (shape: [batch, n_inputs])
"""
ret = self.decoder(latents) + self.pre_bias
if self.normalize:
assert info is not None
ret = ret * info["std"] + info["mu"]
return ret