def _tf_simple_save()

in spinup/utils/logx.py [0:0]


    def _tf_simple_save(self, itr=None):
        """
        Uses simple_save to save a trained model, plus info to make it easy
        to associated tensors to variables after restore. 
        """
        if proc_id()==0:
            assert hasattr(self, 'tf_saver_elements'), \
                "First have to setup saving with self.setup_tf_saver"
            fpath = 'tf1_save' + ('%d'%itr if itr is not None else '')
            fpath = osp.join(self.output_dir, fpath)
            if osp.exists(fpath):
                # simple_save refuses to be useful if fpath already exists,
                # so just delete fpath if it's there.
                shutil.rmtree(fpath)
            tf.saved_model.simple_save(export_dir=fpath, **self.tf_saver_elements)
            joblib.dump(self.tf_saver_info, osp.join(fpath, 'model_info.pkl'))