spinup/exercises/pytorch/problem_set_1/exercise1_3.py (159 lines of code) (raw):

from copy import deepcopy import itertools import numpy as np import torch from torch.optim import Adam import gym import time import spinup.algos.pytorch.td3.core as core from spinup.algos.pytorch.td3.td3 import td3 as true_td3 from spinup.utils.logx import EpochLogger """ Exercise 1.3: TD3 Computation Graph Implement the core computation graph for the TD3 algorithm. As starter code, you are given the entirety of the TD3 algorithm except for the computation graph. Find "YOUR CODE HERE" to begin. To clarify: you will not write an "actor_critic" function for this exercise. But you will use one to build the graph for computing the TD3 updates. """ class ReplayBuffer: """ A simple FIFO experience replay buffer for TD3 agents. """ def __init__(self, obs_dim, act_dim, size): self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.obs2_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32) self.rew_buf = np.zeros(size, dtype=np.float32) self.done_buf = np.zeros(size, dtype=np.float32) self.ptr, self.size, self.max_size = 0, 0, size def store(self, obs, act, rew, next_obs, done): self.obs_buf[self.ptr] = obs self.obs2_buf[self.ptr] = next_obs self.act_buf[self.ptr] = act self.rew_buf[self.ptr] = rew self.done_buf[self.ptr] = done self.ptr = (self.ptr+1) % self.max_size self.size = min(self.size+1, self.max_size) def sample_batch(self, batch_size=32): idxs = np.random.randint(0, self.size, size=batch_size) batch = dict(obs=self.obs_buf[idxs], obs2=self.obs2_buf[idxs], act=self.act_buf[idxs], rew=self.rew_buf[idxs], done=self.done_buf[idxs]) return {k: torch.as_tensor(v, dtype=torch.float32) for k,v in batch.items()} def td3(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=0, steps_per_epoch=4000, epochs=100, replay_size=int(1e6), gamma=0.99, polyak=0.995, pi_lr=1e-3, q_lr=1e-3, batch_size=100, start_steps=10000, update_after=1000, update_every=50, act_noise=0.1, target_noise=0.2, noise_clip=0.5, policy_delay=2, num_test_episodes=10, max_ep_len=1000, logger_kwargs=dict(), save_freq=1): """ Twin Delayed Deep Deterministic Policy Gradient (TD3) Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. actor_critic: The constructor method for a PyTorch Module with an ``act`` method, a ``pi`` module, a ``q1`` module, and a ``q2`` module. The ``act`` method and ``pi`` module should accept batches of observations as inputs, and ``q1`` and ``q2`` should accept a batch of observations and a batch of actions as inputs. When called, these should return: =========== ================ ====================================== Call Output Shape Description =========== ================ ====================================== ``act`` (batch, act_dim) | Numpy array of actions for each | observation. ``pi`` (batch, act_dim) | Tensor containing actions from policy | given observations. ``q1`` (batch,) | Tensor containing one current estimate | of Q* for the provided observations | and actions. (Critical: make sure to | flatten this!) ``q2`` (batch,) | Tensor containing the other current | estimate of Q* for the provided observations | and actions. (Critical: make sure to | flatten this!) =========== ================ ====================================== ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object you provided to TD3. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs to run and train agent. replay_size (int): Maximum length of replay buffer. gamma (float): Discount factor. (Always between 0 and 1.) polyak (float): Interpolation factor in polyak averaging for target networks. Target networks are updated towards main networks according to: .. math:: \\theta_{\\text{targ}} \\leftarrow \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta where :math:`\\rho` is polyak. (Always between 0 and 1, usually close to 1.) pi_lr (float): Learning rate for policy. q_lr (float): Learning rate for Q-networks. batch_size (int): Minibatch size for SGD. start_steps (int): Number of steps for uniform-random action selection, before running real policy. Helps exploration. update_after (int): Number of env interactions to collect before starting to do gradient descent updates. Ensures replay buffer is full enough for useful updates. update_every (int): Number of env interactions that should elapse between gradient descent updates. Note: Regardless of how long you wait between updates, the ratio of env steps to gradient steps is locked to 1. act_noise (float): Stddev for Gaussian exploration noise added to policy at training time. (At test time, no noise is added.) target_noise (float): Stddev for smoothing noise added to target policy. noise_clip (float): Limit for absolute value of target policy smoothing noise. policy_delay (int): Policy will only be updated once every policy_delay times for each update of the Q-networks. num_test_episodes (int): Number of episodes to test the deterministic policy at the end of each epoch. max_ep_len (int): Maximum length of trajectory / episode / rollout. logger_kwargs (dict): Keyword args for EpochLogger. save_freq (int): How often (in terms of gap between epochs) to save the current policy and value function. """ logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) torch.manual_seed(seed) np.random.seed(seed) env, test_env = env_fn(), env_fn() obs_dim = env.observation_space.shape act_dim = env.action_space.shape[0] # Action limit for clamping: critically, assumes all dimensions share the same bound! act_limit = env.action_space.high[0] # Create actor-critic module and target networks ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs) ac_targ = deepcopy(ac) # Freeze target networks with respect to optimizers (only update via polyak averaging) for p in ac_targ.parameters(): p.requires_grad = False # List of parameters for both Q-networks (save this for convenience) q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters()) # Experience buffer replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size) # Count variables (protip: try to get a feel for how different size networks behave!) var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.q1, ac.q2]) logger.log('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n'%var_counts) #=========================================================================# # # # All of your code goes in the space below. # # # #=========================================================================# # Set up function for computing TD3 Q-losses def compute_loss_q(data): o, a, r, o2, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done'] # Q-values ####################### # # # YOUR CODE HERE # # # ####################### # q1 = # q2 = # Target policy smoothing ####################### # # # YOUR CODE HERE # # # ####################### # Target Q-values ####################### # # # YOUR CODE HERE # # # ####################### # MSE loss against Bellman backup ####################### # # # YOUR CODE HERE # # # ####################### # loss_q1 = # loss_q2 = # loss_q = # Useful info for logging loss_info = dict(Q1Vals=q1.detach().numpy(), Q2Vals=q2.detach().numpy()) return loss_q, loss_info # Set up function for computing TD3 pi loss def compute_loss_pi(data): ####################### # # # YOUR CODE HERE # # # ####################### # loss_pi = return loss_pi #=========================================================================# # # # All of your code goes in the space above. # # # #=========================================================================# # Set up optimizers for policy and q-function pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr) q_optimizer = Adam(q_params, lr=q_lr) # Set up model saving logger.setup_pytorch_saver(ac) def update(data, timer): # First run one gradient descent step for Q1 and Q2 q_optimizer.zero_grad() loss_q, loss_info = compute_loss_q(data) loss_q.backward() q_optimizer.step() # Record things logger.store(LossQ=loss_q.item(), **loss_info) # Possibly update pi and target networks if timer % policy_delay == 0: # Freeze Q-networks so you don't waste computational effort # computing gradients for them during the policy learning step. for p in q_params: p.requires_grad = False # Next run one gradient descent step for pi. pi_optimizer.zero_grad() loss_pi = compute_loss_pi(data) loss_pi.backward() pi_optimizer.step() # Unfreeze Q-networks so you can optimize it at next DDPG step. for p in q_params: p.requires_grad = True # Record things logger.store(LossPi=loss_pi.item()) # Finally, update target networks by polyak averaging. with torch.no_grad(): for p, p_targ in zip(ac.parameters(), ac_targ.parameters()): # NB: We use an in-place operations "mul_", "add_" to update target # params, as opposed to "mul" and "add", which would make new tensors. p_targ.data.mul_(polyak) p_targ.data.add_((1 - polyak) * p.data) def get_action(o, noise_scale): a = ac.act(torch.as_tensor(o, dtype=torch.float32)) a += noise_scale * np.random.randn(act_dim) return np.clip(a, -act_limit, act_limit) def test_agent(): for j in range(num_test_episodes): o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0 while not(d or (ep_len == max_ep_len)): # Take deterministic actions at test time (noise_scale=0) o, r, d, _ = test_env.step(get_action(o, 0)) ep_ret += r ep_len += 1 logger.store(TestEpRet=ep_ret, TestEpLen=ep_len) # Prepare for interaction with environment total_steps = steps_per_epoch * epochs start_time = time.time() o, ep_ret, ep_len = env.reset(), 0, 0 # Main loop: collect experience in env and update/log each epoch for t in range(total_steps): # Until start_steps have elapsed, randomly sample actions # from a uniform distribution for better exploration. Afterwards, # use the learned policy (with some noise, via act_noise). if t > start_steps: a = get_action(o, act_noise) else: a = env.action_space.sample() # Step the env o2, r, d, _ = env.step(a) ep_ret += r ep_len += 1 # Ignore the "done" signal if it comes from hitting the time # horizon (that is, when it's an artificial terminal signal # that isn't based on the agent's state) d = False if ep_len==max_ep_len else d # Store experience to replay buffer replay_buffer.store(o, a, r, o2, d) # Super critical, easy to overlook step: make sure to update # most recent observation! o = o2 # End of trajectory handling if d or (ep_len == max_ep_len): logger.store(EpRet=ep_ret, EpLen=ep_len) o, ep_ret, ep_len = env.reset(), 0, 0 # Update handling if t >= update_after and t % update_every == 0: for j in range(update_every): batch = replay_buffer.sample_batch(batch_size) update(data=batch, timer=j) # End of epoch handling if (t+1) % steps_per_epoch == 0: epoch = (t+1) // steps_per_epoch # Save model if (epoch % save_freq == 0) or (epoch == epochs): logger.save_state({'env': env}, None) # Test the performance of the deterministic version of the agent. test_agent() # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('TestEpRet', with_min_and_max=True) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('TestEpLen', average_only=True) logger.log_tabular('TotalEnvInteracts', t) logger.log_tabular('Q1Vals', with_min_and_max=True) logger.log_tabular('Q2Vals', with_min_and_max=True) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('LossQ', average_only=True) logger.log_tabular('Time', time.time()-start_time) logger.dump_tabular() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='HalfCheetah-v2') parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--exp_name', type=str, default='ex13-td3') parser.add_argument('--use_soln', action='store_true') args = parser.parse_args() from spinup.utils.run_utils import setup_logger_kwargs logger_kwargs = setup_logger_kwargs(args.exp_name + '-' + args.env.lower(), args.seed) all_kwargs = dict( env_fn=lambda : gym.make(args.env), actor_critic=core.MLPActorCritic, ac_kwargs=dict(hidden_sizes=[128,128]), max_ep_len=150, seed=args.seed, logger_kwargs=logger_kwargs, epochs=10 ) if args.use_soln: true_td3(**all_kwargs) else: td3(**all_kwargs)