in tiktoken/model.py [0:0]
def encoding_name_for_model(model_name: str) -> str:
"""Returns the name of the encoding used by a model.
Raises a KeyError if the model name is not recognised.
"""
encoding_name = None
if model_name in MODEL_TO_ENCODING:
encoding_name = MODEL_TO_ENCODING[model_name]
else:
# Check if the model matches a known prefix
# Prefix matching avoids needing library updates for every model version release
# Note that this can match on non-existent models (e.g., gpt-3.5-turbo-FAKE)
for model_prefix, model_encoding_name in MODEL_PREFIX_TO_ENCODING.items():
if model_name.startswith(model_prefix):
return model_encoding_name
if encoding_name is None:
raise KeyError(
f"Could not automatically map {model_name} to a tokeniser. "
"Please use `tiktoken.get_encoding` to explicitly get the tokeniser you expect."
) from None
return encoding_name