def save_model()

in train_helpers.py [0:0]


def save_model(path, vae, ema_vae, optimizer, H):
    torch.save(vae.state_dict(), f'{path}-model.th')
    torch.save(ema_vae.state_dict(), f'{path}-model-ema.th')
    torch.save(optimizer.state_dict(), f'{path}-opt.th')
    from_log = os.path.join(H.save_dir, 'log.jsonl')
    to_log = f'{os.path.dirname(path)}/{os.path.basename(path)}-log.jsonl'
    subprocess.check_output(['cp', from_log, to_log])