def forward_uncond()

in vae.py [0:0]


    def forward_uncond(self, xs, t=None, lvs=None):
        try:
            x = xs[self.base]
        except KeyError:
            ref = xs[list(xs.keys())[0]]
            x = torch.zeros(dtype=ref.dtype, size=(ref.shape[0], self.widths[self.base], self.base, self.base), device=ref.device)
        if self.mixin is not None:
            x = x + F.interpolate(xs[self.mixin][:, :x.shape[1], ...], scale_factor=self.base // self.mixin)
        z, x = self.sample_uncond(x, t, lvs=lvs)
        x = x + self.z_fn(z)
        x = self.resnet(x)
        xs[self.base] = x
        return xs