def set_up_hyperparams()

in train_helpers.py [0:0]


def set_up_hyperparams(s=None):
    H = Hyperparams()
    parser = argparse.ArgumentParser()
    parser = add_vae_arguments(parser)
    parse_args_and_update_hparams(H, parser, s=s)
    setup_mpi(H)
    setup_save_dirs(H)
    logprint = logger(H.logdir)
    for i, k in enumerate(sorted(H)):
        logprint(type='hparam', key=k, value=H[k])
    np.random.seed(H.seed)
    torch.manual_seed(H.seed)
    torch.cuda.manual_seed(H.seed)
    logprint('training model', H.desc, 'on', H.dataset)
    return H, logprint