train_simple.py [15:24]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                                     tokenize_dataset)
from weak_to_strong.loss import logconf_loss_fn, product_loss_fn, xent_loss
from weak_to_strong.train import ModelConfig, train_and_save_model

# NOTE learning rates are not particularly tuned, work somewhat reasonably at train batch size 32
MODEL_CONFIGS = [
    ModelConfig(
        name="gpt2",
        default_lr=5e-5,
        eval_batch_size=32,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



train_weak_to_strong.py [12:21]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                                     tokenize_dataset)
from weak_to_strong.loss import logconf_loss_fn, product_loss_fn, xent_loss
from weak_to_strong.train import ModelConfig, train_and_save_model

# NOTE learning rates are not particularly tuned, work somewhat reasonably at train batch size 32
MODEL_CONFIGS = [
    ModelConfig(
        name="gpt2",
        default_lr=5e-5,
        eval_batch_size=32,
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



