train_simple.py [105:122]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        },
        # This model is really big, save space by using adafactor.
        # Note that even then it will take up ~60GB per GPU on an 8-GPU machine.
        default_optimizer="adafactor",
    ),
]
MODELS_DICT: Dict[str, ModelConfig] = {
    model_config.name: model_config for model_config in MODEL_CONFIGS
}


loss_dict = {
    "logconf": logconf_loss_fn(),
    "product": product_loss_fn(),
    "xent": xent_loss(),
}

VALID_LOSSES: List[str] = list(loss_dict.keys())
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



train_weak_to_strong.py [97:114]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        },
        # This model is really big, save space by using adafactor.
        # Note that even then it will take up ~60GB per GPU on an 8-GPU machine.
        default_optimizer="adafactor",
    ),
]
MODELS_DICT: Dict[str, ModelConfig] = {
    model_config.name: model_config for model_config in MODEL_CONFIGS
}


loss_dict = {
    "logconf": logconf_loss_fn(),
    "product": product_loss_fn(),
    "xent": xent_loss(),
}

VALID_LOSSES: List[str] = list(loss_dict.keys())
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



