notebooks/Plotting.ipynb (148 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "id": "eb9a4b5a", "metadata": {}, "source": [ "# Simple Plotting\n" ] }, { "cell_type": "code", "execution_count": null, "id": "88c7ff9f", "metadata": {}, "outputs": [], "source": [ "RESULTS_PATH = \"../../your_sweep_path/default\"\n", "\n", "PLOT_ALL_SEEDS = False\n", "# Full sweep\n", "MODELS_TO_PLOT = [\"gpt2\", \"gpt2-medium\", \"gpt2-large\", \"gpt2-xl\", \"Qwen/Qwen-1_8B\", \"Qwen/Qwen-7B\", \"Qwen/Qwen-14B\"]\n", "# Minimal sweep\n", "# MODELS_TO_PLOT = [\"gpt2\", \"gpt2-medium\", \"gpt2-large\"]\n" ] }, { "cell_type": "code", "execution_count": null, "id": "00ca073c", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set_style('whitegrid')\n", "\n", "from IPython.display import display\n", "\n", "import os\n", "import glob\n", "import json" ] }, { "cell_type": "code", "execution_count": null, "id": "e5caa051", "metadata": {}, "outputs": [], "source": [ "records = []\n", "for result_filename in glob.glob(os.path.join(RESULTS_PATH, \"**/results_summary.json\"), recursive=True):\n", " config_file = os.path.join(\"/\".join(result_filename.split(\"/\")[:-1]), \"config.json\")\n", " config = json.load(open(config_file, \"r\"))\n", " if config[\"model_size\"] not in MODELS_TO_PLOT:\n", " continue\n", " if 'seed' not in config:\n", " config['seed'] = 0\n", " record = config.copy()\n", " if 'weak_model' in config:\n", " for k in record['weak_model']:\n", " if k == 'model_size':\n", " assert record['weak_model'][k] == record['weak_model_size']\n", " record['weak_' + k] = record['weak_model'][k]\n", " del record['weak_model']\n", " record.update(json.load(open(result_filename)))\n", " records.append(record)\n", "\n", "df = pd.DataFrame.from_records(records).sort_values(['ds_name', 'model_size'])" ] }, { "cell_type": "code", "execution_count": null, "id": "2f628577", "metadata": {}, "outputs": [], "source": [ "datasets = df.ds_name.unique()\n", "for dataset in datasets:\n", " cur_df = df[(df.ds_name == dataset)].copy()\n", " base_accuracies = cur_df[cur_df['weak_model_size'].isna()].groupby('model_size').agg({'accuracy': 'mean', 'seed': 'count'}).sort_values('accuracy')\n", " base_accuracy_lookup = base_accuracies['accuracy'].to_dict()\n", " base_accuracies = base_accuracies.reset_index()\n", "\n", " cur_df['strong_model_accuracy'] = cur_df['model_size'].apply(lambda x: base_accuracy_lookup[x])\n", " cur_df.loc[~cur_df['weak_model_size'].isna(), 'weak_model_accuracy'] = cur_df.loc[~cur_df['weak_model_size'].isna(), 'weak_model_size'].apply(lambda x: base_accuracy_lookup[x])\n", "\n", " # Exclude cases where the weak model is better than the strong model from PGR calculation.\n", " valid_pgr_index = (\n", " (~cur_df['weak_model_size'].isna()) & \n", " (cur_df['weak_model_size'] != cur_df['model_size']) & \n", " (cur_df['strong_model_accuracy'] > cur_df['weak_model_accuracy'])\n", " )\n", " cur_df.loc[valid_pgr_index, 'pgr'] = (cur_df.loc[valid_pgr_index, 'accuracy'] - cur_df.loc[valid_pgr_index, 'weak_model_accuracy']) / (cur_df.loc[valid_pgr_index, 'strong_model_accuracy'] - cur_df.loc[valid_pgr_index, 'weak_model_accuracy'])\n", "\n", " cur_df.loc[cur_df['weak_model_size'].isna(), \"weak_model_size\"] = \"ground truth\"\n", "\n", " for seed in [None] + (sorted(cur_df['seed'].unique().tolist()) if PLOT_ALL_SEEDS else []):\n", " plot_df = cur_df.copy().sort_values(['strong_model_accuracy']).sort_values(['loss'], ascending=False)\n", " if seed is not None:\n", " plot_df = plot_df[plot_df['seed'] == seed]\n", "\n", " print(f\"Dataset: {dataset} (seed: {seed})\")\n", "\n", " pgr_results = plot_df[~plot_df['pgr'].isna()].groupby(['loss']).aggregate({\"pgr\": \"median\"})\n", "\n", " palette = sns.color_palette('colorblind', n_colors=len(plot_df['weak_model_size'].unique()) - 1)\n", " color_dict = {model: (\"black\" if model == 'ground truth' else palette.pop()) for model in plot_df['weak_model_size'].unique()}\n", "\n", " sns.lineplot(data=plot_df, x='strong_model_accuracy', y='accuracy', hue='weak_model_size', style='loss', markers=True, palette=color_dict)\n", " pd.plotting.table(plt.gca(), pgr_results.round(4), loc='lower right', colWidths=[0.1, 0.1], cellLoc='center', rowLoc='center')\n", " plt.xticks(ticks=base_accuracies['accuracy'], labels=[f\"{e} ({base_accuracy_lookup[e]:.4f})\" for e in base_accuracies['model_size']], rotation=90)\n", " plt.title(f\"Dataset: {dataset} (seed: {seed})\")\n", " plt.legend(loc='upper left')\n", " suffix = \"\"\n", " if seed is not None:\n", " suffix = f\"_{seed}\"\n", " plt.savefig(f\"{dataset.replace('/', '-')}{suffix}.png\", dpi=300, bbox_inches='tight')\n", " plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "openai", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }