notebooks/Plotting_old.ipynb (159 lines of code) (raw):

{ "cells": [ { "cell_type": "markdown", "id": "eb9a4b5a", "metadata": {}, "source": [ "# Simple Plotting\n" ] }, { "cell_type": "code", "execution_count": null, "id": "88c7ff9f", "metadata": {}, "outputs": [], "source": [ "RESULTS_PATH = \"../../your_sweep_results_path\"\n", "\n", "PLOT_ALL_SEEDS = False\n", "# Full sweep\n", "MODELS_TO_PLOT = [\"gpt2\", \"gpt2-medium\", \"gpt2-large\", \"gpt2-xl\", \"Qwen/Qwen-1_8B\", \"Qwen/Qwen-7B\", \"Qwen/Qwen-14B\"]\n", "# Minimal sweep\n", "# MODELS_TO_PLOT = [\"gpt2\", \"gpt2-medium\", \"gpt2-large\"]\n" ] }, { "cell_type": "code", "execution_count": null, "id": "00ca073c", "metadata": {}, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set_style('whitegrid')\n", "\n", "from IPython.display import display\n", "\n", "import os\n", "import glob\n", "import json" ] }, { "cell_type": "code", "execution_count": null, "id": "e5caa051", "metadata": {}, "outputs": [], "source": [ "records = []\n", "all_results_folders = ['/'.join(e.split('/')[:-1]) for e in glob.glob(os.path.join(RESULTS_PATH, \"**/*.results_summary.json\"), recursive=True)]\n", "for result_folder in set(all_results_folders):\n", " config_file = os.path.join(result_folder, \"config.json\")\n", " config = json.load(open(config_file, \"r\"))\n", " if config[\"strong_model_size\"] not in MODELS_TO_PLOT:\n", " continue\n", " if 'seed' not in config:\n", " config['seed'] = 0\n", " result_filename = (config[\"weak_model_size\"].replace('.', '_') + \"_\" + config[\"strong_model_size\"].replace('.', '_') + \".results_summary.json\").replace('/', '_')\n", " record = config.copy()\n", " record.update(json.load(open(config_file.replace('config.json', result_filename))))\n", " records.append(record)\n", "\n", "df = pd.DataFrame.from_records(records).sort_values(['ds_name', 'weak_model_size', 'strong_model_size'])" ] }, { "cell_type": "code", "execution_count": null, "id": "2f628577", "metadata": {}, "outputs": [], "source": [ "datasets = df.ds_name.unique()\n", "for dataset in datasets:\n", " cur_df = df[(df.ds_name == dataset)]\n", " base_df = pd.concat([\n", " pd.DataFrame.from_dict({\"strong_model_size\": cur_df['weak_model_size'].to_list(), \"accuracy\": cur_df['weak_acc'].to_list(), \"seed\": cur_df['seed'].to_list()}),\n", " pd.DataFrame.from_dict({\"strong_model_size\": cur_df['strong_model_size'].to_list(), \"accuracy\": cur_df['strong_acc'].to_list(), \"seed\": cur_df['seed'].to_list()})\n", " ])\n", " base_accuracies = base_df.groupby('strong_model_size').agg({'accuracy': 'mean', 'seed': 'count'}).sort_values('accuracy')\n", " base_accuracy_lookup = base_accuracies['accuracy'].to_dict()\n", " base_accuracies = base_accuracies.reset_index()\n", " base_df.reset_index(inplace=True)\n", " base_df['weak_model_size'] = 'ground truth'\n", " base_df['loss'] = 'xent'\n", " base_df['strong_model_accuracy'] = base_df['strong_model_size'].apply(lambda x: base_accuracy_lookup[x])\n", "\n", " weak_to_strong = cur_df[['weak_model_size', 'strong_model_size', 'seed'] + [e for e in cur_df.columns if e.startswith('transfer_acc')]]\n", " weak_to_strong = weak_to_strong.melt(id_vars=['weak_model_size', 'strong_model_size', 'seed'], var_name='loss', value_name='accuracy')\n", " weak_to_strong = weak_to_strong.dropna(subset=['accuracy'])\n", " weak_to_strong.reset_index(inplace=True)\n", " weak_to_strong['loss'] = weak_to_strong['loss'].str.replace('transfer_acc_', '')\n", " weak_to_strong['strong_model_accuracy'] = weak_to_strong['strong_model_size'].apply(lambda x: base_accuracy_lookup[x])\n", "\n", " # Exclude cases where the weak model is better than the strong model from PGR calculation.\n", " pgr_df = cur_df[(cur_df['weak_model_size'] != cur_df['strong_model_size']) & (cur_df['strong_acc'] > cur_df['weak_acc'])]\n", " pgr_df = pgr_df.melt(id_vars=[e for e in cur_df.columns if not e.startswith('transfer_acc')], var_name='loss', value_name='transfer_acc')\n", " pgr_df = pgr_df.dropna(subset=['transfer_acc'])\n", " pgr_df['loss'] = pgr_df['loss'].str.replace('transfer_acc_', '')\n", " pgr_df['pgr'] = (pgr_df['transfer_acc'] - pgr_df['weak_acc']) / (pgr_df['strong_acc'] - pgr_df['weak_acc'])\n", "\n", " for seed in [None] + (sorted(cur_df['seed'].unique().tolist()) if PLOT_ALL_SEEDS else []):\n", " plot_df = pd.concat([base_df, weak_to_strong])\n", " seed_pgr_df = pgr_df\n", " if seed is not None:\n", " plot_df = plot_df[plot_df['seed'] == seed]\n", " # We mean across seeds, this is because sometimes the weak and strong models will have run on different hardware and therefore\n", " # have slight differences. We want to average these out when filtering by seed.\n", "\n", " seed_pgr_df = pgr_df[pgr_df['seed'] == seed]\n", "\n", " if seed is not None or cur_df['seed'].nunique() == 1:\n", " plot_df = plot_df[['strong_model_accuracy', 'weak_model_size', 'loss', 'accuracy']].groupby(['strong_model_accuracy', 'weak_model_size', 'loss']).mean().reset_index().sort_values(['loss', 'weak_model_size'], ascending=False)\n", "\n", " print(f\"Dataset: {dataset} (seed: {seed})\")\n", "\n", " pgr_results = seed_pgr_df.groupby(['loss']).aggregate({\"pgr\": \"median\"})\n", " display(pgr_results)\n", "\n", " palette = sns.color_palette('colorblind', n_colors=len(plot_df['weak_model_size'].unique()) - 1)\n", " color_dict = {model: (\"black\" if model == 'ground truth' else palette.pop()) for model in plot_df['weak_model_size'].unique()}\n", "\n", " sns.lineplot(data=plot_df, x='strong_model_accuracy', y='accuracy', hue='weak_model_size', style='loss', markers=True, palette=color_dict)\n", " pd.plotting.table(plt.gca(), pgr_results.round(4), loc='lower right', colWidths=[0.1, 0.1], cellLoc='center', rowLoc='center')\n", " plt.xticks(ticks=base_accuracies['accuracy'], labels=[f\"{e} ({base_accuracy_lookup[e]:.4f})\" for e in base_accuracies['strong_model_size']], rotation=90)\n", " plt.title(f\"Dataset: {dataset} (seed: {seed})\")\n", " plt.legend(loc='upper left')\n", " plt.savefig(f\"{dataset.replace('/', '-')}_{seed}.png\", dpi=300, bbox_inches='tight')\n", " plt.show()" ] } ], "metadata": { "kernelspec": { "display_name": "openai", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.5" } }, "nbformat": 4, "nbformat_minor": 5 }