in causalml/inference/tree/models.py [0:0]
def __init__(self,
n_estimators=10,
max_features=10,
random_state=2019,
max_depth=5,
min_samples_leaf=100,
min_samples_treatment=10,
n_reg=10,
evaluationFunction=None,
control_name=None,
normalization=True,
n_jobs=-1):
"""
Initialize the UpliftRandomForestClassifier class.
"""
self.classes_ = {}
self.n_estimators = n_estimators
self.max_features = max_features
self.random_state = random_state
self.max_depth = max_depth
self.min_samples_leaf = min_samples_leaf
self.min_samples_treatment = min_samples_treatment
self.n_reg = n_reg
self.evaluationFunction = evaluationFunction
self.control_name = control_name
self.n_jobs = n_jobs
# Create forest
self.uplift_forest = []
for _ in range(n_estimators):
uplift_tree = UpliftTreeClassifier(
max_features=self.max_features, max_depth=self.max_depth,
min_samples_leaf=self.min_samples_leaf,
min_samples_treatment=self.min_samples_treatment,
n_reg=self.n_reg,
evaluationFunction=self.evaluationFunction,
control_name=self.control_name,
normalization=normalization)
self.uplift_forest.append(uplift_tree)
if self.n_jobs == -1:
self.n_jobs = mp.cpu_count()