def get_synthetic_preds()

in causalml/dataset/synthetic.py [0:0]


def get_synthetic_preds(synthetic_data_func, n=1000, estimators={}):
    """Generate predictions for synthetic data using specified function (single simulation)

    Args:
        synthetic_data_func (function): synthetic data generation function
        n (int, optional): number of samples
        estimators (dict of object): dict of names and objects of treatment effect estimators

    Returns:
        (dict): dict of the actual and estimates of treatment effects
    """
    y, X, w, tau, b, e = synthetic_data_func(n=n)

    preds_dict = {}
    preds_dict[KEY_ACTUAL] = tau
    preds_dict[KEY_GENERATED_DATA] = {'y': y, 'X': X, 'w': w, 'tau': tau, 'b': b, 'e': e}

    # Predict p_hat because e would not be directly observed in real-life
    p_model = ElasticNetPropensityModel()
    p_hat = p_model.fit_predict(X, w)

    if estimators:
        for name, learner in estimators.items():
            try:
                preds_dict[name] = learner.fit_predict(X=X, treatment=w, y=y, p=p_hat).flatten()
            except TypeError:
                preds_dict[name] = learner.fit_predict(X=X, treatment=w, y=y).flatten()
    else:
        for base_learner, label_l in zip([BaseSRegressor, BaseTRegressor, BaseXRegressor, BaseRRegressor],
                                         ['S', 'T', 'X', 'R']):
            for model, label_m in zip([LinearRegression, XGBRegressor], ['LR', 'XGB']):
                learner = base_learner(model())
                model_name = '{} Learner ({})'.format(label_l, label_m)
                try:
                    preds_dict[model_name] = learner.fit_predict(X=X, treatment=w, y=y, p=p_hat).flatten()
                except TypeError:
                    preds_dict[model_name] = learner.fit_predict(X=X, treatment=w, y=y).flatten()

        learner = CausalTreeRegressor(random_state=RANDOM_SEED)
        preds_dict['Causal Tree'] = learner.fit_predict(X=X, treatment=w, y=y).flatten()

    return preds_dict