def divideSet()

in causalml/inference/tree/models.py [0:0]


    def divideSet(self, X, treatment, y, column, value):
        '''
        Tree node split.

        Args
        ----
        X : ndarray, shape = [num_samples, num_features]
            An ndarray of the covariates used to train the uplift model.
        treatment : array-like, shape = [num_samples]
            An array containing the treatment group for each unit.
        y : array-like, shape = [num_samples]
            An array containing the outcome of interest for each unit.
        column : int
                The column used to split the data.
        value : float or int
                The value in the column for splitting the data.

        Returns
        -------
        (X_l, X_r, treatment_l, treatment_r, y_l, y_r) : list of ndarray
                The covariates, treatments and outcomes of left node and the right node.
        '''
        # for int and float values
        if isinstance(value, int) or isinstance(value, float):
            filt = X[:, column] >= value
        else:  # for strings
            filt = X[:, column] == value

        return X[filt], X[~filt], treatment[filt], treatment[~filt], y[filt], y[~filt]