causalml/inference/meta/rlearner.py [105:111]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            check_p_conditions(p, self.t_groups)

        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



causalml/inference/meta/tmle.py [116:121]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        check_p_conditions(p, self.t_groups)
        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



causalml/inference/meta/xlearner.py [116:122]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            check_p_conditions(p, self.t_groups)

        if isinstance(p, (np.ndarray, pd.Series)):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



