causalml/inference/meta/rlearner.py [238:244]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            check_p_conditions(p, self.t_groups)

        if isinstance(p, np.ndarray):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



causalml/inference/meta/xlearner.py [247:252]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        check_p_conditions(p, self.t_groups)
        if isinstance(p, np.ndarray):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



causalml/inference/meta/xlearner.py [307:312]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
            check_p_conditions(p, self.t_groups)
        if isinstance(p, np.ndarray):
            treatment_name = self.t_groups[0]
            p = {treatment_name: convert_pd_to_np(p)}
        elif isinstance(p, dict):
            p = {treatment_name: convert_pd_to_np(_p) for treatment_name, _p in p.items()}
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



