examples/keras_spark_rossmann_run.py [182:282]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        df = df.withColumn('Promo2Days',
                           F.when(df.Promo2SinceYear > 1900,
                                  F.greatest(F.lit(0), F.least(F.lit(25 * 7), F.datediff(df.Date, df.Promo2Since))))
                           .otherwise(0))
        df = df.withColumn('Promo2Weeks', (df.Promo2Days / 7).cast(T.IntegerType()))

        # Check that we did not lose any rows through inner joins.
        assert num_rows == df.count(), 'lost rows in joins'
        return df


    def build_vocabulary(df, cols):
        vocab = {}
        for col in cols:
            values = [r[0] for r in df.select(col).distinct().collect()]
            col_type = type([x for x in values if x is not None][0])
            default_value = col_type()
            vocab[col] = sorted(values, key=lambda x: x or default_value)
        return vocab


    def cast_columns(df, cols):
        for col in cols:
            df = df.withColumn(col, F.coalesce(df[col].cast(T.FloatType()), F.lit(0.0)))
        return df


    def lookup_columns(df, vocab):
        def lookup(mapping):
            def fn(v):
                return mapping.index(v)
            return F.udf(fn, returnType=T.IntegerType())

        for col, mapping in vocab.items():
            df = df.withColumn(col, lookup(mapping)(df[col]))
        return df


    if args.sample_rate:
        train_csv = train_csv.sample(withReplacement=False, fraction=args.sample_rate)
        test_csv = test_csv.sample(withReplacement=False, fraction=args.sample_rate)

    # Prepare data frames from CSV files.
    train_df = prepare_df(train_csv).cache()
    test_df = prepare_df(test_csv).cache()

    # Add elapsed times from holidays & promos, the data spanning training & test datasets.
    elapsed_cols = ['Promo', 'StateHoliday', 'SchoolHoliday']
    elapsed = add_elapsed(train_df.select('Date', 'Store', *elapsed_cols)
                                  .unionAll(test_df.select('Date', 'Store', *elapsed_cols)),
                          elapsed_cols)

    # Join with elapsed times.
    train_df = train_df \
        .join(elapsed, ['Date', 'Store']) \
        .select(train_df['*'], *[prefix + col for prefix in ['Before', 'After'] for col in elapsed_cols])
    test_df = test_df \
        .join(elapsed, ['Date', 'Store']) \
        .select(test_df['*'], *[prefix + col for prefix in ['Before', 'After'] for col in elapsed_cols])

    # Filter out zero sales.
    train_df = train_df.filter(train_df.Sales > 0)

    print('===================')
    print('Prepared data frame')
    print('===================')
    train_df.show()

    categorical_cols = [
        'Store', 'State', 'DayOfWeek', 'Year', 'Month', 'Day', 'Week', 'CompetitionMonthsOpen', 'Promo2Weeks', 'StoreType',
        'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear', 'Promo2SinceYear', 'Events', 'Promo',
        'StateHoliday', 'SchoolHoliday'
    ]

    continuous_cols = [
        'CompetitionDistance', 'Max_TemperatureC', 'Mean_TemperatureC', 'Min_TemperatureC', 'Max_Humidity',
        'Mean_Humidity', 'Min_Humidity', 'Max_Wind_SpeedKm_h', 'Mean_Wind_SpeedKm_h', 'CloudCover', 'trend', 'trend_DE',
        'BeforePromo', 'AfterPromo', 'AfterStateHoliday', 'BeforeStateHoliday', 'BeforeSchoolHoliday', 'AfterSchoolHoliday'
    ]

    all_cols = categorical_cols + continuous_cols

    # Select features.
    train_df = train_df.select(*(all_cols + ['Sales', 'Date'])).cache()
    test_df = test_df.select(*(all_cols + ['Id', 'Date'])).cache()

    # Build vocabulary of categorical columns.
    vocab = build_vocabulary(train_df.select(*categorical_cols)
                                     .unionAll(test_df.select(*categorical_cols)).cache(),
                             categorical_cols)

    # Cast continuous columns to float & lookup categorical columns.
    train_df = cast_columns(train_df, continuous_cols + ['Sales'])
    train_df = lookup_columns(train_df, vocab)
    test_df = cast_columns(test_df, continuous_cols)
    test_df = lookup_columns(test_df, vocab)

    # Split into training & validation.
    # Test set is in 2015, use the same period in 2014 from the training set as a validation set.
    test_min_date = test_df.agg(F.min(test_df.Date)).collect()[0][0]
    test_max_date = test_df.agg(F.max(test_df.Date)).collect()[0][0]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



examples/keras_spark_rossmann_estimator.py [187:287]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        df = df.withColumn('Promo2Days',
                           F.when(df.Promo2SinceYear > 1900,
                                  F.greatest(F.lit(0), F.least(F.lit(25 * 7), F.datediff(df.Date, df.Promo2Since))))
                           .otherwise(0))
        df = df.withColumn('Promo2Weeks', (df.Promo2Days / 7).cast(T.IntegerType()))

        # Check that we did not lose any rows through inner joins.
        assert num_rows == df.count(), 'lost rows in joins'
        return df


    def build_vocabulary(df, cols):
        vocab = {}
        for col in cols:
            values = [r[0] for r in df.select(col).distinct().collect()]
            col_type = type([x for x in values if x is not None][0])
            default_value = col_type()
            vocab[col] = sorted(values, key=lambda x: x or default_value)
        return vocab


    def cast_columns(df, cols):
        for col in cols:
            df = df.withColumn(col, F.coalesce(df[col].cast(T.FloatType()), F.lit(0.0)))
        return df


    def lookup_columns(df, vocab):
        def lookup(mapping):
            def fn(v):
                return mapping.index(v)
            return F.udf(fn, returnType=T.IntegerType())

        for col, mapping in vocab.items():
            df = df.withColumn(col, lookup(mapping)(df[col]))
        return df


    if args.sample_rate:
        train_csv = train_csv.sample(withReplacement=False, fraction=args.sample_rate)
        test_csv = test_csv.sample(withReplacement=False, fraction=args.sample_rate)

    # Prepare data frames from CSV files.
    train_df = prepare_df(train_csv).cache()
    test_df = prepare_df(test_csv).cache()

    # Add elapsed times from holidays & promos, the data spanning training & test datasets.
    elapsed_cols = ['Promo', 'StateHoliday', 'SchoolHoliday']
    elapsed = add_elapsed(train_df.select('Date', 'Store', *elapsed_cols)
                          .unionAll(test_df.select('Date', 'Store', *elapsed_cols)),
                          elapsed_cols)

    # Join with elapsed times.
    train_df = train_df \
        .join(elapsed, ['Date', 'Store']) \
        .select(train_df['*'], *[prefix + col for prefix in ['Before', 'After'] for col in elapsed_cols])
    test_df = test_df \
        .join(elapsed, ['Date', 'Store']) \
        .select(test_df['*'], *[prefix + col for prefix in ['Before', 'After'] for col in elapsed_cols])

    # Filter out zero sales.
    train_df = train_df.filter(train_df.Sales > 0)

    print('===================')
    print('Prepared data frame')
    print('===================')
    train_df.show()

    categorical_cols = [
        'Store', 'State', 'DayOfWeek', 'Year', 'Month', 'Day', 'Week', 'CompetitionMonthsOpen', 'Promo2Weeks', 'StoreType',
        'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear', 'Promo2SinceYear', 'Events', 'Promo',
        'StateHoliday', 'SchoolHoliday'
    ]

    continuous_cols = [
        'CompetitionDistance', 'Max_TemperatureC', 'Mean_TemperatureC', 'Min_TemperatureC', 'Max_Humidity',
        'Mean_Humidity', 'Min_Humidity', 'Max_Wind_SpeedKm_h', 'Mean_Wind_SpeedKm_h', 'CloudCover', 'trend', 'trend_DE',
        'BeforePromo', 'AfterPromo', 'AfterStateHoliday', 'BeforeStateHoliday', 'BeforeSchoolHoliday', 'AfterSchoolHoliday'
    ]

    all_cols = categorical_cols + continuous_cols

    # Select features.
    train_df = train_df.select(*(all_cols + ['Sales', 'Date'])).cache()
    test_df = test_df.select(*(all_cols + ['Id', 'Date'])).cache()

    # Build vocabulary of categorical columns.
    vocab = build_vocabulary(train_df.select(*categorical_cols)
                             .unionAll(test_df.select(*categorical_cols)).cache(),
                             categorical_cols)

    # Cast continuous columns to float & lookup categorical columns.
    train_df = cast_columns(train_df, continuous_cols + ['Sales'])
    train_df = lookup_columns(train_df, vocab)
    test_df = cast_columns(test_df, continuous_cols)
    test_df = lookup_columns(test_df, vocab)

    # Split into training & validation.
    # Test set is in 2015, use the same period in 2014 from the training set as a validation set.
    test_min_date = test_df.agg(F.min(test_df.Date)).collect()[0][0]
    test_max_date = test_df.agg(F.max(test_df.Date)).collect()[0][0]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



