in horovod/spark/keras/bare.py [0:0]
def save_bare_keras_optimizer(optimizer, h5py_file):
def get_json_type(obj):
"""Serialize any object to a JSON-serializable structure.
# Arguments
obj: the object to serialize
# Returns
JSON-serializable structure representing `obj`.
# Raises
TypeError: if `obj` cannot be serialized.
"""
# if obj is a serializable Keras class instance
# e.g. optimizer, layer
if hasattr(obj, 'get_config'):
return {'class_name': obj.__class__.__name__,
'config': obj.get_config()}
# if obj is any numpy type
if type(obj).__module__ == np.__name__:
if isinstance(obj, np.ndarray):
return obj.tolist()
return obj.item()
# misc functions (e.g. loss function)
if callable(obj):
return obj.__name__
# if obj is a python 'type'
if type(obj).__name__ == type.__name__:
return obj.__name__
raise TypeError('Not JSON Serializable: %s' % (obj,))
if isinstance(optimizer, optimizers.TFOptimizer):
warnings.warn(
'TensorFlow optimizers do not '
'make it possible to access '
'optimizer attributes or optimizer state '
'after instantiation. '
'As a result, we cannot save the optimizer '
'as part of the model save file.'
'You will have to compile your model again '
'after loading it. '
'Prefer using a Keras optimizer instead '
'(see keras.io/optimizers).')
else:
h5py_file['training_config'] = json.dumps({
'optimizer_config': {
'class_name': optimizer.__class__.__name__,
'config': optimizer.get_config()
},
}, default=get_json_type).encode('utf8')
symbolic_weights = getattr(optimizer, 'weights')
if symbolic_weights:
optimizer_weights_group = h5py_file['optimizer_weights']
weight_values = K.batch_get_value(symbolic_weights)
weight_names = []
for i, (w, val) in enumerate(zip(symbolic_weights, weight_values)):
if hasattr(w, 'name') and w.name:
name = str(w.name)
else:
name = 'param_' + str(i)
if name in weight_names:
idx = 2
unique_name = name + '_1'
while unique_name in weight_names:
unique_name = name + '_' + str(idx)
idx += 1
name = unique_name
weight_names.append(name.encode('utf8'))
optimizer_weights_group['weight_names'] = weight_names
for name, val in zip(weight_names, weight_values):
optimizer_weights_group[name] = val