def main()

in examples/tensorflow_mnist.py [0:0]


def main(_):
    # Horovod: initialize Horovod.
    hvd.init()

    # Keras automatically creates a cache directory in ~/.keras/datasets for
    # storing the downloaded MNIST data. This creates a race
    # condition among the workers that share the same filesystem. If the
    # directory already exists by the time this worker gets around to creating
    # it, ignore the resulting exception and continue.
    cache_dir = os.path.join(os.path.expanduser('~'), '.keras', 'datasets')
    if not os.path.exists(cache_dir):
        try:
            os.mkdir(cache_dir)
        except OSError as e:
            if e.errno == errno.EEXIST and os.path.isdir(cache_dir):
                pass
            else:
                raise

    # Download and load MNIST dataset.
    (x_train, y_train), (x_test, y_test) = \
        keras.datasets.mnist.load_data('MNIST-data-%d' % hvd.rank())

    # The shape of downloaded data is (-1, 28, 28), hence we need to reshape it
    # into (-1, 784) to feed into our network. Also, need to normalize the
    # features between 0 and 1.
    x_train = np.reshape(x_train, (-1, 784)) / 255.0
    x_test = np.reshape(x_test, (-1, 784)) / 255.0

    # Build model...
    with tf.name_scope('input'):
        image = tf.placeholder(tf.float32, [None, 784], name='image')
        label = tf.placeholder(tf.float32, [None], name='label')
    predict, loss = conv_model(image, label, tf.estimator.ModeKeys.TRAIN)

    lr_scaler = hvd.size()
    # By default, Adasum doesn't need scaling when increasing batch size. If used with NCCL,
    # scale lr by local_size
    if args.use_adasum:
        lr_scaler = hvd.local_size() if hvd.nccl_built() else 1

    # Horovod: adjust learning rate based on lr_scaler.
    opt = tf.train.AdamOptimizer(0.001 * lr_scaler)

    # Horovod: add Horovod Distributed Optimizer.
    opt = hvd.DistributedOptimizer(opt, op=hvd.Adasum if args.use_adasum else hvd.Average,
                                   gradient_predivide_factor=args.gradient_predivide_factor)

    global_step = tf.train.get_or_create_global_step()
    train_op = opt.minimize(loss, global_step=global_step)

    hooks = [
        # Horovod: BroadcastGlobalVariablesHook broadcasts initial variable states
        # from rank 0 to all other processes. This is necessary to ensure consistent
        # initialization of all workers when training is started with random weights
        # or restored from a checkpoint.
        hvd.BroadcastGlobalVariablesHook(0),

        # Horovod: adjust number of steps based on number of GPUs.
        tf.train.StopAtStepHook(last_step=20000 // hvd.size()),

        tf.train.LoggingTensorHook(tensors={'step': global_step, 'loss': loss},
                                   every_n_iter=10),
    ]

    # Horovod: pin GPU to be used to process local rank (one GPU per process)
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    config.gpu_options.visible_device_list = str(hvd.local_rank())

    # Horovod: save checkpoints only on worker 0 to prevent other workers from
    # corrupting them.
    checkpoint_dir = './checkpoints' if hvd.rank() == 0 else None
    training_batch_generator = train_input_generator(x_train,
                                                     y_train, batch_size=100)
    # The MonitoredTrainingSession takes care of session initialization,
    # restoring from a checkpoint, saving to a checkpoint, and closing when done
    # or an error occurs.
    with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir,
                                           hooks=hooks,
                                           config=config) as mon_sess:
        while not mon_sess.should_stop():
            # Run a training step synchronously.
            image_, label_ = next(training_batch_generator)
            mon_sess.run(train_op, feed_dict={image: image_, label: label_})