examples/elastic/tensorflow_keras_mnist_elastic.py [37:43]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



examples/keras_mnist.py [57:63]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



examples/tensorflow_keras_mnist.py [59:65]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



examples/keras_mnist_advanced.py [75:81]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



