examples/elastic/pytorch_synthetic_benchmark_elastic.py (98 lines of code) (raw):

import argparse import torch.backends.cudnn as cudnn import torch.nn.functional as F import torch.optim as optim import torch.utils.data.distributed from torchvision import models import horovod.torch as hvd import timeit import numpy as np # Benchmark settings parser = argparse.ArgumentParser(description='PyTorch Synthetic Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--fp16-allreduce', action='store_true', default=False, help='use fp16 compression during allreduce') parser.add_argument('--model', type=str, default='resnet50', help='model to benchmark') parser.add_argument('--batch-size', type=int, default=32, help='input batch size') parser.add_argument('--num-warmup-batches', type=int, default=10, help='number of warm-up batches that don\'t count towards benchmark') parser.add_argument('--num-batches-per-iter', type=int, default=10, help='number of batches per benchmark iteration') parser.add_argument('--num-iters', type=int, default=10, help='number of benchmark iterations') parser.add_argument('--num-batches-per-commit', type=int, default=1, help='number of batches per commit of the elastic state object') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--use-adasum', action='store_true', default=False, help='use adasum algorithm to do reduction') args = parser.parse_args() args.cuda = not args.no_cuda and torch.cuda.is_available() hvd.init() if args.cuda: # Horovod: pin GPU to local rank. torch.cuda.set_device(hvd.local_rank()) cudnn.benchmark = True # Set up standard model. model = getattr(models, args.model)() # By default, Adasum doesn't need scaling up learning rate. def lr_scaler(): return hvd.size() if not args.use_adasum else 1 if args.cuda: # Move model to GPU. model.cuda() # If using GPU Adasum allreduce, scale learning rate by local_size. if args.use_adasum and hvd.nccl_built(): lr_scaler = hvd.local_size() lr = 0.01 optimizer = optim.SGD(model.parameters(), lr=lr * lr_scaler()) # Horovod: (optional) compression algorithm. compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none # Horovod: wrap optimizer with DistributedOptimizer. optimizer = hvd.DistributedOptimizer(optimizer, named_parameters=model.named_parameters(), compression=compression, op=hvd.Adasum if args.use_adasum else hvd.Average) # Set up fixed fake data data = torch.randn(args.batch_size, 3, 224, 224) target = torch.LongTensor(args.batch_size).random_() % 1000 if args.cuda: data, target = data.cuda(), target.cuda() def benchmark_step(state): optimizer.zero_grad() output = model(data) loss = F.cross_entropy(output, target) loss.backward() optimizer.step() state.batch += 1 if state.batch == args.num_batches_per_commit: state.batch = 0 state.commit() def log(s, nl=True): if hvd.rank() != 0: return print(s, end='\n' if nl else '') log('Model: %s' % args.model) log('Batch size: %d' % args.batch_size) device = 'GPU' if args.cuda else 'CPU' log('Number of %ss: %d' % (device, hvd.size())) @hvd.elastic.run def run_benchmark(state): # Warm-up if not state.warm: log('Running warmup...') timeit.timeit(lambda: benchmark_step(state), number=args.num_warmup_batches) state.warm = True state.commit() # Benchmark if state.iter == 0: log('Running benchmark...') for x in range(state.iter, args.num_iters): time = timeit.timeit(lambda: benchmark_step(state), number=args.num_batches_per_iter) img_sec = args.batch_size * args.num_batches_per_iter / time log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device)) state.img_secs.append(img_sec) state.iter = x state.commit() # adjust learning rate on reset def on_state_reset(): for param_group in optimizer.param_groups: param_group['lr'] = lr * lr_scaler() state = hvd.elastic.TorchState(model, optimizer, img_secs=[], iter=0, batch=0, warm=False) state.register_reset_callbacks([on_state_reset]) run_benchmark(state) # Results img_sec_mean = np.mean(state.img_secs) img_sec_conf = 1.96 * np.std(state.img_secs) log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf)) log('Total img/sec on %d %s(s): %.1f +-%.1f' % (hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))