import argparse
import logging
import os
import zipfile
import time

import mxnet as mx
import horovod.mxnet as hvd
from mxnet import autograd, gluon, nd
from mxnet.test_utils import download

# Training settings
parser = argparse.ArgumentParser(description='MXNet MNIST Example')

parser.add_argument('--batch-size', type=int, default=64,
                    help='training batch size (default: 64)')
parser.add_argument('--dtype', type=str, default='float32',
                    help='training data type (default: float32)')
parser.add_argument('--epochs', type=int, default=5,
                    help='number of training epochs (default: 5)')
parser.add_argument('--lr', type=float, default=0.01,
                    help='learning rate (default: 0.01)')
parser.add_argument('--momentum', type=float, default=0.9,
                    help='SGD momentum (default: 0.9)')
parser.add_argument('--no-cuda', action='store_true', default=False,
                    help='disable training on GPU (default: False)')
parser.add_argument('--gradient-predivide-factor', type=float, default=1.0,
                    help='apply gradient predivide factor in optimizer (default: 1.0)')
args = parser.parse_args()

if not args.no_cuda:
    # Disable CUDA if there are no GPUs.
    if not mx.test_utils.list_gpus():
        args.no_cuda = True

logging.basicConfig(level=logging.INFO)
logging.info(args)


# Function to get mnist iterator given a rank
def get_mnist_iterator(rank):
    data_dir = "data-%d" % rank
    if not os.path.isdir(data_dir):
        os.makedirs(data_dir)
    zip_file_path = download('http://data.mxnet.io/mxnet/data/mnist.zip',
                             dirname=data_dir)
    with zipfile.ZipFile(zip_file_path) as zf:
        zf.extractall(data_dir)

    input_shape = (1, 28, 28)
    batch_size = args.batch_size

    train_iter = mx.io.MNISTIter(
        image="%s/train-images-idx3-ubyte" % data_dir,
        label="%s/train-labels-idx1-ubyte" % data_dir,
        input_shape=input_shape,
        batch_size=batch_size,
        shuffle=True,
        flat=False,
        num_parts=hvd.size(),
        part_index=hvd.rank()
    )

    val_iter = mx.io.MNISTIter(
        image="%s/t10k-images-idx3-ubyte" % data_dir,
        label="%s/t10k-labels-idx1-ubyte" % data_dir,
        input_shape=input_shape,
        batch_size=batch_size,
        flat=False,
    )

    return train_iter, val_iter


# Function to define neural network
def conv_nets():
    net = gluon.nn.HybridSequential()
    with net.name_scope():
        net.add(gluon.nn.Conv2D(channels=20, kernel_size=5, activation='relu'))
        net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
        net.add(gluon.nn.Conv2D(channels=50, kernel_size=5, activation='relu'))
        net.add(gluon.nn.MaxPool2D(pool_size=2, strides=2))
        net.add(gluon.nn.Flatten())
        net.add(gluon.nn.Dense(512, activation="relu"))
        net.add(gluon.nn.Dense(10))
    return net


# Function to evaluate accuracy for a model
def evaluate(model, data_iter, context):
    data_iter.reset()
    metric = mx.metric.Accuracy()
    for _, batch in enumerate(data_iter):
        data = batch.data[0].as_in_context(context)
        label = batch.label[0].as_in_context(context)
        output = model(data.astype(args.dtype, copy=False))
        metric.update([label], [output])

    return metric.get()


# Initialize Horovod
hvd.init()

# Horovod: pin context to local rank
context = mx.cpu(hvd.local_rank()) if args.no_cuda else mx.gpu(hvd.local_rank())
num_workers = hvd.size()

# Load training and validation data
train_data, val_data = get_mnist_iterator(hvd.rank())

# Build model
model = conv_nets()
model.cast(args.dtype)
model.hybridize()

# Create optimizer
optimizer_params = {'momentum': args.momentum,
                    'learning_rate': args.lr * hvd.size()}
opt = mx.optimizer.create('sgd', **optimizer_params)

# Initialize parameters
initializer = mx.init.Xavier(rnd_type='gaussian', factor_type="in",
                             magnitude=2)
model.initialize(initializer, ctx=context)

# Horovod: fetch and broadcast parameters
params = model.collect_params()
if params is not None:
    hvd.broadcast_parameters(params, root_rank=0)

# Horovod: create DistributedTrainer, a subclass of gluon.Trainer
trainer = hvd.DistributedTrainer(params, opt,
                                 gradient_predivide_factor=args.gradient_predivide_factor)

# Create loss function and train metric
loss_fn = gluon.loss.SoftmaxCrossEntropyLoss()
metric = mx.metric.Accuracy()

# Train model
for epoch in range(args.epochs):
    tic = time.time()
    train_data.reset()
    metric.reset()
    for nbatch, batch in enumerate(train_data, start=1):
        data = batch.data[0].as_in_context(context)
        label = batch.label[0].as_in_context(context)
        with autograd.record():
            output = model(data.astype(args.dtype, copy=False))
            loss = loss_fn(output, label)
        loss.backward()
        trainer.step(args.batch_size)
        metric.update([label], [output])

        if nbatch % 100 == 0:
            name, acc = metric.get()
            logging.info('[Epoch %d Batch %d] Training: %s=%f' %
                         (epoch, nbatch, name, acc))

    if hvd.rank() == 0:
        elapsed = time.time() - tic
        speed = nbatch * args.batch_size * hvd.size() / elapsed
        logging.info('Epoch[%d]\tSpeed=%.2f samples/s\tTime cost=%f',
                     epoch, speed, elapsed)

    # Evaluate model accuracy
    _, train_acc = metric.get()
    name, val_acc = evaluate(model, val_data, context)
    if hvd.rank() == 0:
        logging.info('Epoch[%d]\tTrain: %s=%f\tValidation: %s=%f', epoch, name,
                     train_acc, name, val_acc)

    if hvd.rank() == 0 and epoch == args.epochs - 1:
        assert val_acc > 0.96, "Achieved accuracy (%f) is lower than expected\
                                (0.96)" % val_acc
