examples/tensorflow2_keras_mnist.py (41 lines of code) (raw):

# Copyright 2019 Uber Technologies, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import tensorflow as tf import horovod.tensorflow.keras as hvd # Horovod: initialize Horovod. hvd.init() # Horovod: pin GPU to be used to process local rank (one GPU per process) gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) if gpus: tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU') (mnist_images, mnist_labels), _ = \ tf.keras.datasets.mnist.load_data(path='mnist-%d.npz' % hvd.rank()) dataset = tf.data.Dataset.from_tensor_slices( (tf.cast(mnist_images[..., tf.newaxis] / 255.0, tf.float32), tf.cast(mnist_labels, tf.int64)) ) dataset = dataset.repeat().shuffle(10000).batch(128) mnist_model = tf.keras.Sequential([ tf.keras.layers.Conv2D(32, [3, 3], activation='relu'), tf.keras.layers.Conv2D(64, [3, 3], activation='relu'), tf.keras.layers.MaxPooling2D(pool_size=(2, 2)), tf.keras.layers.Dropout(0.25), tf.keras.layers.Flatten(), tf.keras.layers.Dense(128, activation='relu'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(10, activation='softmax') ]) # Horovod: adjust learning rate based on number of GPUs. scaled_lr = 0.001 * hvd.size() opt = tf.optimizers.Adam(scaled_lr) # Horovod: add Horovod DistributedOptimizer. opt = hvd.DistributedOptimizer(opt) # Horovod: Specify `experimental_run_tf_function=False` to ensure TensorFlow # uses hvd.DistributedOptimizer() to compute gradients. mnist_model.compile(loss=tf.losses.SparseCategoricalCrossentropy(), optimizer=opt, metrics=['accuracy'], experimental_run_tf_function=False) callbacks = [ # Horovod: broadcast initial variable states from rank 0 to all other processes. # This is necessary to ensure consistent initialization of all workers when # training is started with random weights or restored from a checkpoint. hvd.callbacks.BroadcastGlobalVariablesCallback(0), # Horovod: average metrics among workers at the end of every epoch. # # Note: This callback must be in the list before the ReduceLROnPlateau, # TensorBoard or other metrics-based callbacks. hvd.callbacks.MetricAverageCallback(), # Horovod: using `lr = 1.0 * hvd.size()` from the very beginning leads to worse final # accuracy. Scale the learning rate `lr = 1.0` ---> `lr = 1.0 * hvd.size()` during # the first three epochs. See https://arxiv.org/abs/1706.02677 for details. hvd.callbacks.LearningRateWarmupCallback(warmup_epochs=3, initial_lr=scaled_lr, verbose=1), ] # Horovod: save checkpoints only on worker 0 to prevent other workers from corrupting them. if hvd.rank() == 0: callbacks.append(tf.keras.callbacks.ModelCheckpoint('./checkpoint-{epoch}.h5')) # Horovod: write logs on worker 0. verbose = 1 if hvd.rank() == 0 else 0 # Train the model. # Horovod: adjust number of steps based on number of GPUs. mnist_model.fit(dataset, steps_per_epoch=500 // hvd.size(), callbacks=callbacks, epochs=24, verbose=verbose)