examples/tensorflow2_synthetic_benchmark.py (76 lines of code) (raw):

# Copyright 2019 Uber Technologies, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import argparse import os import numpy as np import timeit import tensorflow as tf import horovod.tensorflow as hvd from tensorflow.keras import applications # Benchmark settings parser = argparse.ArgumentParser(description='TensorFlow Synthetic Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--fp16-allreduce', action='store_true', default=False, help='use fp16 compression during allreduce') parser.add_argument('--model', type=str, default='ResNet50', help='model to benchmark') parser.add_argument('--batch-size', type=int, default=32, help='input batch size') parser.add_argument('--num-warmup-batches', type=int, default=10, help='number of warm-up batches that don\'t count towards benchmark') parser.add_argument('--num-batches-per-iter', type=int, default=10, help='number of batches per benchmark iteration') parser.add_argument('--num-iters', type=int, default=10, help='number of benchmark iterations') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') args = parser.parse_args() args.cuda = not args.no_cuda # Horovod: initialize Horovod. hvd.init() # Horovod: pin GPU to be used to process local rank (one GPU per process) if args.cuda: gpus = tf.config.experimental.list_physical_devices('GPU') for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) if gpus: tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU') else: os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # Set up standard model. model = getattr(applications, args.model)(weights=None) opt = tf.optimizers.SGD(0.01) data = tf.random.uniform([args.batch_size, 224, 224, 3]) target = tf.random.uniform([args.batch_size, 1], minval=0, maxval=999, dtype=tf.int64) @tf.function def benchmark_step(first_batch): # Horovod: (optional) compression algorithm. compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none # Horovod: use DistributedGradientTape with tf.GradientTape() as tape: probs = model(data, training=True) loss = tf.losses.sparse_categorical_crossentropy(target, probs) # Horovod: add Horovod Distributed GradientTape. tape = hvd.DistributedGradientTape(tape, compression=compression) gradients = tape.gradient(loss, model.trainable_variables) opt.apply_gradients(zip(gradients, model.trainable_variables)) # Horovod: broadcast initial variable states from rank 0 to all other processes. # This is necessary to ensure consistent initialization of all workers when # training is started with random weights or restored from a checkpoint. # # Note: broadcast should be done after the first gradient step to ensure optimizer # initialization. if first_batch: hvd.broadcast_variables(model.variables, root_rank=0) hvd.broadcast_variables(opt.variables(), root_rank=0) def log(s, nl=True): if hvd.rank() != 0: return print(s, end='\n' if nl else '') log('Model: %s' % args.model) log('Batch size: %d' % args.batch_size) device = 'GPU' if args.cuda else 'CPU' log('Number of %ss: %d' % (device, hvd.size())) with tf.device(device): # Warm-up log('Running warmup...') benchmark_step(first_batch=True) timeit.timeit(lambda: benchmark_step(first_batch=False), number=args.num_warmup_batches) # Benchmark log('Running benchmark...') img_secs = [] for x in range(args.num_iters): time = timeit.timeit(lambda: benchmark_step(first_batch=False), number=args.num_batches_per_iter) img_sec = args.batch_size * args.num_batches_per_iter / time log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device)) img_secs.append(img_sec) # Results img_sec_mean = np.mean(img_secs) img_sec_conf = 1.96 * np.std(img_secs) log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf)) log('Total img/sec on %d %s(s): %.1f +-%.1f' % (hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))