def populate_defaults()

in ludwig/features/sequence_feature.py [0:0]


    def populate_defaults(output_feature):
        set_default_value(
            output_feature,
            LOSS,
            {
                'type': 'softmax_cross_entropy',
                'sampler': None,
                'negative_samples': 0,
                'distortion': 1,
                'labels_smoothing': 0,
                'class_weights': 1,
                'robust_lambda': 0,
                'confidence_penalty': 0,
                'class_similarities_temperature': 0,
                'weight': 1
            }
        )
        set_default_value(output_feature[LOSS], 'type',
                          'softmax_cross_entropy')
        set_default_value(output_feature[LOSS], 'labels_smoothing', 0)
        set_default_value(output_feature[LOSS], 'class_weights', 1)
        set_default_value(output_feature[LOSS], 'robust_lambda', 0)
        set_default_value(output_feature[LOSS], 'confidence_penalty', 0)
        set_default_value(output_feature[LOSS],
                          'class_similarities_temperature', 0)
        set_default_value(output_feature[LOSS], 'weight', 1)

        if output_feature[LOSS][TYPE] == 'sampled_softmax_cross_entropy':
            set_default_value(output_feature[LOSS], 'sampler', 'log_uniform')
            set_default_value(output_feature[LOSS], 'negative_samples', 25)
            set_default_value(output_feature[LOSS], 'distortion', 0.75)
        else:
            set_default_value(output_feature[LOSS], 'sampler', None)
            set_default_value(output_feature[LOSS], 'negative_samples', 0)
            set_default_value(output_feature[LOSS], 'distortion', 1)

        set_default_value(output_feature[LOSS], 'unique', False)

        set_default_value(output_feature, 'decoder', 'generator')

        if output_feature['decoder'] == 'tagger':
            set_default_value(output_feature, 'reduce_input', None)

        set_default_value(output_feature, 'dependencies', [])
        set_default_value(output_feature, 'reduce_input', SUM)
        set_default_value(output_feature, 'reduce_dependencies', SUM)