in ludwig/features/category_feature.py [0:0]
def populate_defaults(output_feature):
# If Loss is not defined, set an empty dictionary
set_default_value(output_feature, LOSS, {})
# Populate the default values for LOSS if they aren't defined already
set_default_values(
output_feature[LOSS],
{
'type': 'softmax_cross_entropy',
'labels_smoothing': 0,
'class_weights': 1,
'robust_lambda': 0,
'confidence_penalty': 0,
'class_similarities_temperature': 0,
'weight': 1
}
)
if output_feature[LOSS][TYPE] == 'sampled_softmax_cross_entropy':
set_default_values(
output_feature[LOSS],
{
'sampler': 'log_uniform',
'unique': False,
'negative_samples': 25,
'distortion': 0.75
}
)
set_default_values(
output_feature,
{
'top_k': 3,
'dependencies': [],
'reduce_input': SUM,
'reduce_dependencies': SUM
}
)