in ludwig/hyperopt/sampling.py [0:0]
def __init__(self, goal: str, parameters: Dict[str, Any], num_samples=10,
**kwargs) -> None:
HyperoptSampler.__init__(self, goal, parameters)
params_for_join_space = copy.deepcopy(parameters)
for param_values in params_for_join_space.values():
if param_values[TYPE] == CATEGORY:
param_values[TYPE] = 'cat'
if param_values[TYPE] == FLOAT:
param_values[TYPE] = 'real'
if param_values[TYPE] == INT or param_values[TYPE] == 'real':
if SPACE not in param_values:
param_values[SPACE] = 'linear'
param_values['range'] = (param_values['low'],
param_values['high'])
del param_values['low']
del param_values['high']
self.pysot_optimizer = PySOTOptimizer(params_for_join_space)
self.sampled_so_far = 0
self.num_samples = num_samples