def form_ngram()

in petastorm/ngram.py [0:0]


    def form_ngram(self, data, schema):
        """
        Return all the ngrams as dictated by fields, delta_threshold and timestamp_field.
        :param data: The data items, which is a list of Unischema items.
        :return: A dictionary, with keys ``[0, length - 1]``. The value of each key is the corresponding item in the
        ngram at that position.
        """

        base_key = min(self._fields.keys())
        result = []
        prev_ngram_end_timestamp = None

        for index in range(len(data) - self.length + 1):
            # Potential ngram: [index, index + self.length[
            potential_ngram = data[index:index + self.length]

            is_sorted = all(potential_ngram[i][self._timestamp_field.name] <=
                            potential_ngram[i + 1][self._timestamp_field.name]
                            for i in range(len(potential_ngram) - 1))
            if not is_sorted:
                raise NotImplementedError('NGram assumes that the data is sorted by {0} field which is not the case'
                                          .format(self._timestamp_field.name))

            if not self.timestamp_overlap and prev_ngram_end_timestamp is not None:
                # If we dont want timestamps of NGrams to overlap, check that the start timestamp of the next NGram
                # is not less than the end timestamp of the previous NGram
                next_ngram_start_timestamp = potential_ngram[0][self._timestamp_field.name]
                if next_ngram_start_timestamp <= prev_ngram_end_timestamp:
                    continue

            # If all elements in potential_ngram passes the ngram threshold
            # (i.e. current element timestamp - previous element timestamp <= delta_threshold)
            # then add the potential ngram in the results, otherwise skip it
            if len(potential_ngram) == self.length and self._ngram_pass_threshold(potential_ngram):
                new_item = {(base_key + key): value for (key, value) in enumerate(potential_ngram)}
                for key in new_item:
                    # Get the data for that current timestep and create a namedtuple
                    current_item = new_item[key]
                    new_item[key] = {k: current_item[k]
                                     for k in current_item if k in self.get_field_names_at_timestep(key)}
                result.append(new_item)

                if not self.timestamp_overlap:
                    prev_ngram_end_timestamp = potential_ngram[-1][self._timestamp_field.name]

        return result