def _sample_posterior_from_trace()

in pyro/infer/discrete.py [0:0]


def _sample_posterior_from_trace(model, enum_trace, temperature, *args, **kwargs):
    plate_to_symbol = enum_trace.plate_to_symbol

    # Collect a set of query sample sites to which the backward algorithm will propagate.
    sum_dims = set()
    queries = []
    dim_to_size = {}
    cost_terms = OrderedDict()
    enum_terms = OrderedDict()
    for node in enum_trace.nodes.values():
        if node["type"] == "sample":
            ordinal = frozenset(plate_to_symbol[f.name]
                                for f in node["cond_indep_stack"]
                                if f.vectorized and f.size > 1)
            # For sites that depend on an enumerated variable, we need to apply
            # the mask but not the scale when sampling.
            if "masked_log_prob" not in node["packed"]:
                node["packed"]["masked_log_prob"] = packed.scale_and_mask(
                    node["packed"]["unscaled_log_prob"], mask=node["packed"]["mask"])
            log_prob = node["packed"]["masked_log_prob"]
            sum_dims.update(frozenset(log_prob._pyro_dims) - ordinal)
            if sum_dims.isdisjoint(log_prob._pyro_dims):
                continue
            dim_to_size.update(zip(log_prob._pyro_dims, log_prob.shape))
            if node["infer"].get("_enumerate_dim") is None:
                cost_terms.setdefault(ordinal, []).append(log_prob)
            else:
                enum_terms.setdefault(ordinal, []).append(log_prob)
            # Note we mark all sample sites with require_backward to gather
            # enumerated sites and adjust cond_indep_stack of all sample sites.
            if not node["is_observed"]:
                queries.append(log_prob)
                require_backward(log_prob)

    # We take special care to match the term ordering in
    # pyro.infer.traceenum_elbo._compute_model_factors() to allow
    # contract_tensor_tree() to use shared_intermediates() inside
    # TraceEnumSample_ELBO. The special ordering is: first all cost terms in
    # order of model_trace, then all enum_terms in order of model trace.
    log_probs = cost_terms
    for ordinal, terms in enum_terms.items():
        log_probs.setdefault(ordinal, []).extend(terms)

    # Run forward-backward algorithm, collecting the ordinal of each connected component.
    cache = getattr(enum_trace, "_sharing_cache", {})
    ring = _make_ring(temperature, cache, dim_to_size)
    with shared_intermediates(cache):
        log_probs = contract_tensor_tree(log_probs, sum_dims, ring=ring)  # run forward algorithm
    query_to_ordinal = {}
    pending = object()  # a constant value for pending queries
    for query in queries:
        query._pyro_backward_result = pending
    for ordinal, terms in log_probs.items():
        for term in terms:
            if hasattr(term, "_pyro_backward"):
                term._pyro_backward()  # run backward algorithm
        # Note: this is quadratic in number of ordinals
        for query in queries:
            if query not in query_to_ordinal and query._pyro_backward_result is not pending:
                query_to_ordinal[query] = ordinal

    # Construct a collapsed trace by gathering and adjusting cond_indep_stack.
    collapsed_trace = poutine.Trace()
    for node in enum_trace.nodes.values():
        if node["type"] == "sample" and not node["is_observed"]:
            # TODO move this into a Leaf implementation somehow
            new_node = {
                "type": "sample",
                "name": node["name"],
                "is_observed": False,
                "infer": node["infer"].copy(),
                "cond_indep_stack": node["cond_indep_stack"],
                "value": node["value"],
            }
            log_prob = node["packed"]["masked_log_prob"]
            if hasattr(log_prob, "_pyro_backward_result"):
                # Adjust the cond_indep_stack.
                ordinal = query_to_ordinal[log_prob]
                new_node["cond_indep_stack"] = tuple(
                    f for f in node["cond_indep_stack"]
                    if not (f.vectorized and f.size > 1) or plate_to_symbol[f.name] in ordinal)

                # Gather if node depended on an enumerated value.
                sample = log_prob._pyro_backward_result
                if sample is not None:
                    new_value = packed.pack(node["value"], node["infer"]["_dim_to_symbol"])
                    for index, dim in zip(jit_iter(sample), sample._pyro_sample_dims):
                        if dim in new_value._pyro_dims:
                            index._pyro_dims = sample._pyro_dims[1:]
                            new_value = packed.gather(new_value, index, dim)
                    new_node["value"] = packed.unpack(new_value, enum_trace.symbol_to_dim)

            collapsed_trace.add_node(node["name"], **new_node)

    # Replay the model against the collapsed trace.
    with SamplePosteriorMessenger(trace=collapsed_trace):
        return model(*args, **kwargs)