def differentiable_loss()

in pyro/contrib/funsor/infer/traceenum_elbo.py [0:0]


    def differentiable_loss(self, model, guide, *args, **kwargs):

        # get batched, enumerated, to_funsor-ed traces from the guide and model
        with plate(size=self.num_particles) if self.num_particles > 1 else contextlib.ExitStack(), \
                enum(first_available_dim=(-self.max_plate_nesting-1) if self.max_plate_nesting else None):
            guide_tr = trace(guide).get_trace(*args, **kwargs)
            model_tr = trace(replay(model, trace=guide_tr)).get_trace(*args, **kwargs)

        # extract from traces all metadata that we will need to compute the elbo
        guide_terms = terms_from_trace(guide_tr)
        model_terms = terms_from_trace(model_tr)

        # build up a lazy expression for the elbo
        with funsor.interpreter.interpretation(funsor.terms.lazy):
            # identify and contract out auxiliary variables in the model with partial_sum_product
            contracted_factors, uncontracted_factors = [], []
            for f in model_terms["log_factors"]:
                if model_terms["measure_vars"].intersection(f.inputs):
                    contracted_factors.append(f)
                else:
                    uncontracted_factors.append(f)
            # incorporate the effects of subsampling and handlers.scale through a common scale factor
            contracted_costs = [model_terms["scale"] * f for f in funsor.sum_product.partial_sum_product(
                funsor.ops.logaddexp, funsor.ops.add,
                model_terms["log_measures"] + contracted_factors,
                plates=model_terms["plate_vars"], eliminate=model_terms["measure_vars"]
            )]

            costs = contracted_costs + uncontracted_factors  # model costs: logp
            costs += [-f for f in guide_terms["log_factors"]]  # guide costs: -logq

            # finally, integrate out guide variables in the elbo and all plates
            plate_vars = guide_terms["plate_vars"] | model_terms["plate_vars"]
            elbo = to_funsor(0, output=funsor.Real)
            for cost in costs:
                # compute the marginal logq in the guide corresponding to this cost term
                log_prob = funsor.sum_product.sum_product(
                    funsor.ops.logaddexp, funsor.ops.add,
                    guide_terms["log_measures"],
                    plates=plate_vars,
                    eliminate=(plate_vars | guide_terms["measure_vars"]) - frozenset(cost.inputs)
                )
                # compute the expected cost term E_q[logp] or E_q[-logq] using the marginal logq for q
                elbo_term = funsor.Integrate(log_prob, cost, guide_terms["measure_vars"] & frozenset(cost.inputs))
                elbo += elbo_term.reduce(funsor.ops.add, plate_vars & frozenset(cost.inputs))

        # evaluate the elbo, using memoize to share tensor computation where possible
        with funsor.memoize.memoize():
            return -to_data(funsor.optimizer.apply_optimizer(elbo))